【題目】已知拋物線與軸只有一個(gè)交點(diǎn),且與軸交于點(diǎn),如圖,設(shè)它的頂點(diǎn)為B.
(1)求的值;
(2)過(guò)A作x軸的平行線,交拋物線于點(diǎn)C,求證:△ABC是等腰直角三角形;
(3)將此拋物線向下平移4個(gè)單位后,得到拋物線,且與x軸的左半軸交于E點(diǎn),與y軸交于F點(diǎn),如圖.請(qǐng)?jiān)趻佄锞上求點(diǎn)P,使得△是以EF為直角邊的直角三角形?
【答案】(1)m = 2;(2)證明見(jiàn)解析;(3)滿足條件的P點(diǎn)的坐標(biāo)為(, )或(, ).
【解析】試題分析:(1)根據(jù)拋物線與x軸只有一個(gè)交點(diǎn)可知△的值為0,由此得到一個(gè)關(guān)于m的一元一次方程,解此方程可得m的值;
(2)根據(jù)拋物線的解析式求出頂點(diǎn)坐標(biāo),根據(jù)A點(diǎn)在y軸上求出A點(diǎn)坐標(biāo),再求C點(diǎn)坐標(biāo),根據(jù)三個(gè)點(diǎn)的坐標(biāo)得出△ABC為等腰直角三角形;
(3)根據(jù)拋物線解析式求出E、F的坐標(biāo),然后分別討論以E為直角頂點(diǎn)和以F為直角頂點(diǎn)P的坐標(biāo).
試題解析:(1)∵拋物線y=x2-2x+m-1與x軸只有一個(gè)交點(diǎn),
∴△=(-2)2-4×1×(m-1)=0,
解得,m=2;
(2)由(1)知拋物線的解析式為y=x2-2x+1=(x-1)2,易得頂點(diǎn)B(1,0),
當(dāng)x=0時(shí),y=1,得A(0,1).
由1=x2-2x+1,解得,x=0(舍)或x=2,所以C點(diǎn)坐標(biāo)為:(2,1).
過(guò)C作x軸的垂線,垂足為D,則CD=1,BD=xD-xB=1.
∴在Rt△CDB中,∠CBD=45°,BC=.
同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,AB=.
∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;
(3)由題知,拋物線C′的解析式為y=x2-2x-3,
當(dāng)x=0時(shí),y=-3;
當(dāng)y=0時(shí),x=-1或x=3,
∴E(-1,0),F(0,-3),即OE=1,OF=3.
第一種情況:若以E點(diǎn)為直角頂點(diǎn),設(shè)此時(shí)滿足條件的點(diǎn)為P1(x1,y1),作P1M⊥x軸于M.
∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P1EM=∠EFO,得Rt△EFO∽Rt△P1EM,
則,即EM=3P1M.
∵EM=x1+1,P1M=y1,
∴x1+1=3y1①
由于P1(x1,y1)在拋物線C′上,
則有3(x12-2x1-3)=x1+1,
整理得,3x12-7x1-10=0,解得,
x1=,或x2=-1(舍去)
把x1=代入①中可解得,
y1=.
∴P1(, ).
第二種情況:若以F點(diǎn)為直角頂點(diǎn),設(shè)此時(shí)滿足條件的點(diǎn)為P2(x2,y2),作P2N⊥y軸于N.
同第一種情況,易知Rt△EFO∽Rt△FP2N,
得,即P2N=3FN.
∵P2N=x2,FN=3+y2,
∴x2=3(3+y2)②
由于P2(x2,y2)在拋物線C′上,
則有x2=3(3+x22-2x2-3),
整理得3x22-7x2=0,解得x2=0(舍)或x2=.
把x2=代入②中可解得,
y2=.
∴P2(,).
綜上所述,滿足條件的P點(diǎn)的坐標(biāo)為:(, )或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B(3,0)、C(0,﹣2),直線L:y=﹣x﹣交y軸于點(diǎn)E,且與拋物線交于A、D兩點(diǎn),P為拋物線上一動(dòng)點(diǎn)(不與A、D重合).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線L下方時(shí),過(guò)點(diǎn)P作PN∥y軸交L于點(diǎn)N,求PN的最大值.
(3)當(dāng)點(diǎn)P在直線L下方時(shí),過(guò)點(diǎn)P作PM∥x軸交L于點(diǎn)M,求PM的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)分別在的邊上運(yùn)動(dòng)(不與點(diǎn)重合),是的平分線,的延長(zhǎng)線交角的平分線于點(diǎn).
(1)若,求的度數(shù).
(2)若,求的度數(shù).
(3)若,請(qǐng)用含的代數(shù)式表示的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將分別標(biāo)有數(shù)字2,3,5的三張顏色、質(zhì)地、大小完全一樣的卡片背面朝上放在桌面上.
(1)隨機(jī)抽取一張,求抽到奇數(shù)的概率;
(2)隨機(jī)抽取一張作為個(gè)位上的數(shù)字(不放回),再抽取一張作為十位上的數(shù)字,能組成哪些兩位數(shù)?并畫(huà)樹(shù)狀圖或列表求出抽取到的兩位數(shù)恰好是35的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】美麗的赤城湖水庫(kù)是蓬溪縣“天藍(lán)水綠山青”的真實(shí)寫(xiě)照.如圖,赤城湖水庫(kù)的大壩橫截面是一個(gè)梯形,壩頂寬CD=4m,壩高3m,斜坡AD的坡度為1:2.5,斜坡BC的坡度為1:1.5,若大壩長(zhǎng)200m,求大壩所用的土方是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是矩形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,C重合),分別過(guò)點(diǎn)A,C向直線BP作垂線,垂足分別為點(diǎn)E,F,點(diǎn)O為AC的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),請(qǐng)你判斷OE與OF的數(shù)量關(guān)系;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到如圖2所示位置時(shí),請(qǐng)你在圖2中補(bǔ)全圖形并通過(guò)證明判斷(1)中的結(jié)論是否仍然成立;
(3)若點(diǎn)P在射線OA上運(yùn)動(dòng),恰好使得∠OEF=30°時(shí),猜想此時(shí)線段CF,AE,OE之間有怎樣的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠從2011年起開(kāi)始投入技改資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表所示:
年度 | 2011 | 2012 | 2013 | 2014 |
投入技改資金/萬(wàn)元 | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本/(萬(wàn)元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請(qǐng)認(rèn)真分析表中的數(shù)據(jù),從你學(xué)過(guò)的一次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,并求出它的表達(dá)式;
(2)按照這種變化規(guī)律,2015年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)產(chǎn)品成本每件比2014年降低多少萬(wàn)元?
②如果打算在2015年把每件產(chǎn)品的成本降低到3.2萬(wàn)元,那么還需投入技改資金多少萬(wàn)元?(精確到0.01萬(wàn)元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中名學(xué)生的成績(jī)(成績(jī)?nèi)?/span>整數(shù),總分分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1) , ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>以上(包括分)的為“優(yōu)”等,則該校參加這次比賽的名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,0)、B(0,2),點(diǎn)P(a,a).
(1)當(dāng)a=2時(shí),將△AOB繞點(diǎn)P(a,a)逆時(shí)針旋轉(zhuǎn)90°得△DEF,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,點(diǎn)O的對(duì)應(yīng)點(diǎn)為E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,在平面直角坐標(biāo)系中畫(huà)出△DEF,并寫(xiě)出點(diǎn)D的坐標(biāo) ;
(2)作線段AB關(guān)于P點(diǎn)的中心對(duì)稱圖形(點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是G、H),若四邊形ABGH是正方形,則a= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com