【題目】已知四邊形和四邊形都是正方形,且.
(1)如圖1,連接.求證:;
(2)如圖2,將正方形繞著點旋轉(zhuǎn)到某一位置時恰好使得,.求的度數(shù);
(3)在(2)的條件下,當正方形的邊長為時,請直接寫出正方形的邊長.
【答案】(1)見解析;(2);(3).
【解析】
(1)根據(jù)條件,證明,即可得到結論;
(2)連接,由,,得:,由,得:,,,進而,可得:,即可得到結論;
(3)過點G作GM⊥BC,交BC的延長線于點M,設CM=x,則GM=x,CG=x,在在RtBGM中,根據(jù)勾股定理,列出方程,即可求解.
(1)∵四邊形和是正方形
∴,,,
∴,
在和中,
,
∴;
(2)連接,如圖2,
∵,,
∴,
∵,
∴,
∴,
,
在和中,
∴,
∴,
∴,
∴是等邊三角形,
∴;
(3)過點G作GM⊥BC,交BC的延長線于點M,如圖2,
∵,
∴∠GCM=45°,
設CM=x,則GM=x,CG=x,
∵正方形的邊長為,
∴BC=,BG=BD=2,
∵在RtBGM中,BM2+GM2=BG2,
∴,解得:,(舍)
∴,
即:正方形的邊長是:.
科目:初中數(shù)學 來源: 題型:
【題目】下列兩個三角形不一定相似的是
A.兩條直角邊的比都是的兩個直角三角形
B.腰與底的比都是的兩個等腰三角形
C.有一個內(nèi)角為的兩個直角三角形
D.有一個內(nèi)角為的兩個等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】吳京同學根據(jù)學習函數(shù)的經(jīng)驗,對一個新函數(shù)y=的圖象和性質(zhì)進行了如下探究,請幫他把探究過程補充完整
(1)該函數(shù)的自變量x的取值范圍是 .
(2)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … |
| m | ﹣1 |
| ﹣5 | n | ﹣1 | … |
表中m= ,n= .
(3)描點、連線
在下面的格點圖中,建立適當?shù)钠矫嬷苯亲鴺讼?/span>xOy中,描出上表中各對對值為坐標的點(其中x為橫坐標,y為縱坐標),并根據(jù)描出的點畫出該函數(shù)的圖象:
(4)觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):
① ;
② .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形為正方形,已知點、,點、在第二象限內(nèi).
(1)點的坐標___________;
(2)將正方形以每秒個單位的速度沿軸向右平移秒,若存在某一時刻,使在第一象限內(nèi)點、兩點的對應點、正好落在某反比例函數(shù)的圖象上,請求出此時的值以及這個反比例函數(shù)的解析式;
(3)在(2)的情況下,問是否存在軸上的點和反比例函數(shù)圖象上的點,使得以、、、四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點、的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生對70周年國慶閱兵儀式直播的收看情況,某校對部分學生進行了一次調(diào)査,調(diào)査直播收看情況分三種:A.全程收看直播;B.觀看了一部分直播;C.沒有觀看.學校學生會將調(diào)査數(shù)據(jù)進行了整理,并繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題:
(1)本次活動共調(diào)查了______名學生;
(2)圖二中區(qū)域的圓心角的度數(shù)為______;
(3)補全圖;
(4)若該校學生共有3000名,請估計該校學生全程收看直播的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=CB,D是邊AC的中點,過點D做DE⊥BC于E.
(1)以邊AB為直徑作⊙O,作圖要求:尺規(guī)作圖,保留作圖痕跡,不寫作法;
(2)在(1)條件下,判斷DE與圓O是否相切?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com