【題目】如圖,在ABC中,AD平分∠BAC,C=90°,DEAB于點E,點FAC上,BD=DF.

1)求證:CF=EB.

2AB=12AF=8,求CF的長。

【答案】(1)見解析;(2)2

【解析】試題分析:1)根據(jù)角平分線的性質(zhì)角平分線上的點到角的兩邊的距離相等,可得點DAB的距離=DAC的距離即DE=CD,再根據(jù)HL證明RtCDFRtEBD,從而得出CF=EB;
2)設(shè)CF=x,則AE=12-x,再根據(jù)題意得出ACD≌△AED,進而可得出結(jié)論.

試題解析:

1)證明:∵AD平分∠BAC,C=90°DEABE,
DE=DC
CDFEDB中,

RtCDFRtEDBHL),
CF=EB
2)解:設(shè)CF=x,則AE=12-x,
AD平分∠BAC,DEAB,
CD=DE
ACDAED中,

∴△ACD≌△AEDHL),
AC=AE,即8+x=12-x,
解得x=2,即CF=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達位于燈塔B的北偏東l5°方向上的C處.

(1)求∠ACB的度數(shù);

(2)求燈塔B到C處的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠1=∠2,EG平分∠AEC

1)如圖①,∠MAE45°,∠FEG15°,∠NCE75°.求證:ABCD;

2)如圖②,∠MAE140°,∠FEG30°,當(dāng)∠NCE   °時,ABCD;

3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,ABCD;

4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中的老師工作很忙,但初一年級很多數(shù)學(xué)老師仍然堅持鍛煉身體,比如張老師就經(jīng)常堅持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時間x的關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉(zhuǎn)到B O′A′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點C,O′C=14cm.

(參考數(shù)據(jù):,,

(1)求∠CBO'的度數(shù).

(2)顯示屏的頂部A'比原來升高了多少cm?(結(jié)果精確到0.1cm)

(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線的夾角仍保持120°,則顯示屏O′A′應(yīng)繞點O'按順時針方向旋轉(zhuǎn)多少度?(不寫過程,只寫結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(2x1)(﹣12x);

2xx1)﹣(x+1)(x2);

3

4;

5)(2mn2+(﹣2mn2

6)(m2mn+n2)(m2+mn+n2);

7)(a+b)(ab+4ab38a2b2)÷4ab;

8)(2x3y6×(3y2x3÷(2x3y7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接“六一”兒童節(jié).某兒童運動品牌專賣店準(zhǔn)備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:

運動鞋

價格

進價(元/雙)

m

m﹣20

售價(元/雙)

240

160

已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.

(1)求m的值;

(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?該專賣店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想

如圖①,BA、C在同一條直線上,DB⊥BC,EC⊥BC∠DAE=90°,AD=AE,BC、BDCE之間的數(shù)量關(guān)系為

(2)問題解決

如圖②,Rt△ABC,∠ABC=90°,CB=8AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,BD的長。

(3)拓展延伸

如圖③,在四邊形ABCD,∠ABC=∠ADC=90°,CB=8.AB=4DC=DA,則BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農(nóng)村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:

1A型洗衣機和B型洗衣機的售價各是多少元?

2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?

查看答案和解析>>

同步練習(xí)冊答案