【題目】現(xiàn)有甲、乙兩個容器,分別裝有進水管和出水管 ,兩容器的進出水速度不變,先打開乙容器的進水管,2分鐘時再打開甲容器的進水管,又過2分鐘關閉甲容器的進水管,再過4分鐘同時打開甲容器的進、出水管。直到12分鐘時,同時關閉兩容器的進出水管。打開和關閉水管的時間忽略不計。容器中的水量y(升)與乙容器注水時間x(分)之間的關系如圖所示
(1)求甲容器的進、出水速度;
(2)當時,在這過程中是否存在兩容器的水量相等?若存在,求出此時x的值;
(3)如果在乙容器中再裝一個進水管,其進水速度是2升/分,若使兩容器第12分鐘時的水量相等 ,則應該在第幾分鐘打開此進水管?
【答案】(1)5,3;(2)8;(3)10
【解析】
(1)根據圖示知,甲容器是在2分鐘內進水量為10升.
(2)由圖可知,甲容器在第3分鐘時水量為:5×(3-2)=5(升),則A(3,5).設y乙=kx+b(k≠0),利用待定系數法求得該函數解析式,把y=10代入求值即可.
(3)利用t分鐘時的乙容器的總容量達到18升時列出等式.
(1)甲的進水速度: =5(升/分),
甲的出水速度:5=3(升/分);
(2)存在。
由圖可知,甲容器在第3分鐘時水量為:5×(32)=5(升),則A(3,5).
設y乙=kx+b(k≠0),依題意得:
3k+b=5,b=2,
解得:{k=1b=2,
所以y乙=x+2.
當y乙=10時,x=8.
所以乙容器進水管打開8分鐘時兩容器的水量相等;
(3)當x=12時,y甲=18.
設在t分鐘打開,進水管.
由題可得,2+12+2(12-t)=18
得t=10.
應在第十分鐘打開此進水管.
科目:初中數學 來源: 題型:
【題目】閱讀與理解: 圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉一個角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結論;
猜想與發(fā)現(xiàn):
根據上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大是多少?當α為多少度時,線段AD的長度最小是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線EF與AB交于點M,與CD交于點O,OG平分∠DOF,若∠COM=120°,∠EMB= ∠COF.
(1)求∠FOG的度數;
(2)寫出一個與∠FOG互為同位角的角;
(3)求∠AMO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,陰影部分是邊長為a的大正方形中剪去一個邊長為b的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗證平方差公式的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】花粉的質量很小,一粒某種植物花粉的質量約為0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科學記數法表示為
A. 3.7×10﹣5克 B. 3.7×10﹣6克 C. 37×10﹣7克 D. 3.7×10﹣8克
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關于t的函數圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
信息讀取
(1)梯形上底的長AB=;
(2)直角梯形ABCD的面積=;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;
(4)當2<t<4時,求S關于t的函數關系式;
問題解決
(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com