【題目】如圖,ABCD中,點O是AC與BD的交點,過點O的直線與BA、DC的延長線分別交于點E、F.
(1)求證:△AOE≌△COF;
(2)請連接EC、AF,則EF與AC滿足什么條件時,四邊形AECF是矩形,并說明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AO=OC,AB∥CD.
∴∠E=∠F.
∵在△AOE與△COF中, ,
∴△AOE≌△COF(AAS)
(2)連接EC、AF,
則EF與AC滿足EF=AC時,四邊形AECF是矩形,
理由如下:
由(1)可知△AOE≌△COF,
∴OE=OF,
∵AO=CO,
∴四邊形AECF是平行四邊形,
∵EF=AC,
∴四邊形AECF是矩形.
【解析】(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可;(2)請連接EC、AF,則EF與AC滿足EF=AC時,四邊形AECF是矩形,首先證明四邊形AECF是平行四邊形,再根據(jù)對角線相等的平行四邊形為矩形即可證明.
【考點精析】利用平行四邊形的性質(zhì)和矩形的判定方法對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是菱形,若OA=2,∠AOC=45°,則B點的坐標是 ( 。
A.(﹣2,2+)
B.(2,2+)
C.(- , 2+)
D.( , 2+)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,一次函數(shù)y1=ax+b的圖象分別與x,y軸交于點B,A,與反比例函數(shù)y2=的圖象交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當x<0且y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的有( )
①垂直平分弦的直線經(jīng)過圓心;②平分弦的直徑一定垂直于弦;
③相等的圓周角所對的弧相等;④等弧所對的弦相等;
⑤等弦所對的弧相等.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+4x+m-1=0。
(1)當m何值時,方程有兩個相等的實數(shù)根;
(2)當m=2時,設α、β是方程的兩個實數(shù)根,求α2+β2+αβ的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O 于點E.
(1) 求證:AC平分∠DAB;
(2) 連接CE,若CE=6,AC=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①對角線互相平分且垂直的四邊形是菱形;
②一組對邊平行,一組對邊相等的四邊形是平行四邊形;
③有一個角是直角的四邊形是矩形;
④對角線相等且垂直的四邊形是正方形
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com