【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對(duì)稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時(shí),AB寬20 m,水位上升到警戒線CD時(shí),CD到拱橋頂E的距離僅為1 m,這時(shí)水面寬度為10 m.
(1)在如圖所示的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.3 m的速度上升,從正常水位開始,持續(xù)多少小時(shí)到達(dá)警戒線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意,解答問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點(diǎn),求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(﹣2,﹣1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點(diǎn)D在x軸上運(yùn)動(dòng),當(dāng)滿足DM=DN時(shí),請求出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,先將△ABC向右平移3個(gè)單位,再向下平移1個(gè)單位到△A1B1C1,△A1B1C1和△A2B2C2關(guān)于x軸對(duì)稱
(1)畫出△A1B1C1和△A2B2C2
(2)在x軸上確定一點(diǎn)P,使BP+A1P的值最小,直接寫出P的坐標(biāo)為________
(3)點(diǎn)Q在坐標(biāo)軸上且滿足△ACQ為等腰三角形,則這樣的Q點(diǎn)有 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=100° ,按要求完成畫圖并解答問題:
(1)畫出△ABC的高CE,中線AF,角平分線BD,且AF所在直線交CE于點(diǎn)H,BD與AF相交于點(diǎn)G;
(2)若∠FAB=40°,求∠AFB的度數(shù)和∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,直線l1∥x軸,直線l2為第一、三象限的角平分線,直線l1與l2相交于A(3,3),點(diǎn)B為直越l1上一點(diǎn),點(diǎn)C為x軸上一點(diǎn),P(x,y)為一動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P(x,y)在x軸上時(shí),y= ,當(dāng)點(diǎn)P(x,y)在直線l1上,y= ,當(dāng)點(diǎn)P(x,y)在直線l2上時(shí)y= .
如圖1,當(dāng)點(diǎn)P在直線l1下方、x軸上方、直線l2左上方區(qū)域時(shí),x,y滿足如下條件:,則∠APO,∠PAB,∠POC的數(shù)量關(guān)系是 .
如圖2,當(dāng)點(diǎn)P在直線l1下方、x軸上方、直線l2右下方區(qū)域時(shí),x,y滿足如下條件:,則∠APO,∠PAB,∠POC的數(shù)量關(guān)系是 .
(2)當(dāng)點(diǎn)P在直線l1上方區(qū)域,且點(diǎn)P不在直線l2時(shí),x,y滿足的條件為:,請畫出圖形,猜想∠APO,∠PAB,∠POC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點(diǎn),按順時(shí)針方向旋轉(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F是□ABCD對(duì)角線AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)請寫出圖中全等三角形(不再添加輔助線).
(2)求證:△ABE≌△CDF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在和中,為邊上一點(diǎn),平分,,.
(1)求證:
(2)如圖(2),若,連接交于,為邊上一點(diǎn),滿足,連接交于. ①求的度數(shù);
②若平分,試說明:平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com