【題目】我省某地區(qū)為了了解2017年初中畢業(yè)生畢業(yè)去向,對部分九年級學生進行了抽樣調查,就九年級學生畢業(yè)后的四種去向:A.讀重點高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如①圖,如②圖)
(1)該地區(qū)共調查了_____名九年級學生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該地區(qū)2017年初中畢業(yè)生共有4000人,請估計該地區(qū)今年初中畢業(yè)生中讀重點高中的學生人數(shù).
【答案】(1)100名,(2)見解析,(3)2200人.
【解析】
(1)根據統(tǒng)計圖由A的人數(shù)和百分比可以得到本次調查的九年級學生數(shù);
(2)根據題目中的數(shù)據可以得到統(tǒng)計圖中未知的數(shù)據,從而可以解答本題;
(3)根據統(tǒng)計圖中的數(shù)據可以估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學生人數(shù).
解:(1)55÷55%=100(名).
故該地區(qū)共調查了100名九年級學生;
(2)B去向的學生有:100﹣55﹣8﹣2=35(人),
C去向所占的百分比為:8÷100×100%=8%,
補全的統(tǒng)計圖如圖所示:
(3)4000×55%=2200(人).
故估計該地區(qū)今年初中畢業(yè)生中讀重點高中的學生人數(shù)有2200人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)B點坐標為 ,并求拋物線的解析式;
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為,動點從點出發(fā),以的速度沿著邊運動,到達點停止運動;另一動點同時從點出發(fā),以的速度沿著邊向點運動,到達點停止運動.設點的運動時間為單位:,的面積為單位:,則與的函數(shù)關系的大致圖象為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,對角線BD、CE交于點O,則線段AO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,在正方形ABCD內,請畫出使∠BPC=90°的所有點P;
(2)如圖②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD內(含邊)畫出使∠BPC=60°的所有點P,并求出△APD面積的最大值;
(3)隨著社會發(fā)展,農業(yè)觀光園走進了我們的生活,某農業(yè)觀光園的平面示意圖如圖3所示的四邊形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,觀光園的設計者想在園中找一點P,使得點P與點A、B、C、D所連接的線段將整個觀光園分成四個區(qū)域,用來進行不同的設計與規(guī)劃,從實用和美觀的角度他們還要求在△BPC的區(qū)域內∠BPC=120°,且△APD的區(qū)域面積最小,試問在四邊形ABCD內是否存在這樣的點P,使得∠BPC=120°,且△APD面積最?若存在,請你在圖中畫出點P點的位置,并求出△APD的最小面積.若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程,①3x2+x=20,②2x2-3xy+4=0,③,④x2=0,⑤x2-3x-4=0.是一元二次方程的是( 。
A. ①②B. ①②④⑤C. ①③④D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經過點(2,-5),頂點坐標為(-1,4),直線l的解析式為y=2x+m.
(1)求拋物線的解析式;
(2)若拋物線與直線l有兩個公共點,求的取值范圍;
(3)若直線l與拋物線只有一個公共點P,求點P的坐標;
(4)設拋物線與軸的交點分別為A、B,求在(3)的條件下△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】元旦期間,某賓館有50個房間供游客居住,當每個房間每天的定價為180元時,房間會全部住滿;當每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.
(1)若房價定為200元時,求賓館每天的利潤;
(2)房價定為多少時,賓館每天的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉一定角度后,BC的對應邊B′C交CD邊于點G,如果當AB′=B′G時量得AD=7,CG=4,連接BB′、CC′,那么=_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com