【題目】如圖,在矩形ABCD中,AD=6,AB=5,點E、F、GH分別在AD、AB、BCCD上,且AF=CG=1,BE=DH=2,點P是直線EFGH之間任意一點,連接PE、PF、PGPH,則PEFPGH的面積和等于______

【答案】

【解析】

連接EGFH,可以證明△AEF≌△CGH,得EF=GH;同理可得EG=FH,進而得到四邊形EGHF是平行四邊形,所以△PEF和△PGH的面積和等于平行四邊形EGHF的面積的一半,再利用平行四邊形EGHF的面積等于矩形ABCD的面積減去四周四個小直角三角形的面積即可求解.

解:如圖所示:

∵在矩形ABCD中,AD=6AB=5,AF=CG=1,BE=DH=2,

AE=AB-BE=5-2=3,

CH=CD-DH=5-2=3,

AE=CH

在△AEF與△CGH中,

∴△AEF≌△CGHSAS),

EF=GH

同理可得,△BGE≌△DFH,

EG=FH,

∴四邊形EGHF是平行四邊形,

∵△PEF和△PGH的高的和等于點H到直線EF的距離,

∴△PEF和△PGH的面積和=平行四邊形EGHF的面積,

且平行四邊形EGHF的面積=

故△PEF和△PGH的面積和為:.

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,6),點B在第一象限內(nèi),點P從原點O出發(fā),以每秒2個單位長度的速度沿著OABCO的路線移動(即沿長方形移動一周).

1)寫出B點的坐標;

2)當點P移動3秒時,求三角形OAP的面積;

3)在移動過程中,當點Px軸距離為4個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的中線BD,CE交于點OF,G分別是BO,CO的中點.

1)求證:四邊形DEFG是平行四邊形.

2)若ABAC,則四邊形DEFG   (填寫特殊的平行四邊形).

3)若四邊形DEFG是邊長為2的正方形,試求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為的長方形周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC

(1)求作:△ABC的內(nèi)切圓⊙O(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)

(2)綜合應用:在你所作的圓中,若∠AOB=140°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點BB在點A右側

1求拋物線的解析式及點B坐標;

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項活動.為了解學生最喜歡哪一項活動,隨機抽了部分學生進行調(diào)查,并將調(diào)查結果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)這次被調(diào)查的學生共有 人;

2)請將統(tǒng)計圖2補充完整;

3)統(tǒng)計圖1B項目對應的扇形的圓心角是 度;

4)已知該校共有學生2500人,根據(jù)調(diào)查結果估計該校喜歡體操的學生有 人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,點M、N位于第一象限,其中M的坐標為(m,5),點N的坐標(n8),且mn

1)若MN與坐標軸平行,則MN   

2)若m、n、t滿足MAx軸,垂足為ANBx軸,垂足為B

①求四邊形MABN的面積;

②連接MN、OM、ON,若MON的面積大于26而小于30,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,在AD上截取AE=AB,連接BEEO,并求∠BEO的角度(要求:尺規(guī)作圖,保留痕跡,不寫作法)

查看答案和解析>>

同步練習冊答案