【題目】如圖,在ACE中,CACE,∠CAE30°,⊙O經(jīng)過(guò)點(diǎn)C,且圓的直徑AB在線(xiàn)段AE上.點(diǎn)D是線(xiàn)段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)AB4時(shí),則CD+OD的最小值是______

【答案】

【解析】

OF平分∠AOC,交⊙OF,連接AF、CFDF,易證四邊形AOCF是菱形,根據(jù)對(duì)稱(chēng)性可得DF=DO.過(guò)點(diǎn)DDHOCH,易得DH=DC,從而有CD+OD=DH+FD.根據(jù)兩點(diǎn)之間線(xiàn)段最短可得:當(dāng)F、D、H三點(diǎn)共線(xiàn)時(shí),DH+FD(即CD+OD)最小,然后在RtOHF中運(yùn)用三角函數(shù)即可解決問(wèn)題.

解:作OF平分∠AOC,交⊙OF,連接AFCF、DF,如圖所示,


OA=OC,∴∠OCA=OAC=30°,∴∠COB=60°,

則∠AOF=COF=AOC=180°-60°)=60°.
OA=OF=OC,
∴△AOF、△COF是等邊三角形,
AF=AO=OC=FC,
∴四邊形AOCF是菱形,
∴根據(jù)對(duì)稱(chēng)性可得DF=DO
過(guò)點(diǎn)DDHOCH,

DH=DCsinDCH=DCsin30°=DC
CD+OD=DH+FD
根據(jù)兩點(diǎn)之間線(xiàn)段最短可得,
當(dāng)F、D、H三點(diǎn)共線(xiàn)時(shí),DH+FD(即CD+OD)最小,
OF=OA=AB=2
∴此時(shí)FH=DH+FD=OFsinFOH=×2=
CD+OD的最小值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近些年來(lái),校園安全受到全社會(huì)的廣泛關(guān)注,為了了解學(xué)生對(duì)于安全知識(shí)的了解程度,學(xué)校采用隨機(jī)抽樣的調(diào)查方式,根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1)接受問(wèn)卷調(diào)查的學(xué)生共有________人.

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若從對(duì)校園安全知識(shí)達(dá)到了了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ABC=90°.

(1)如圖1,分別過(guò)A、C兩點(diǎn)作經(jīng)過(guò)點(diǎn)B的直線(xiàn)的垂線(xiàn),垂足分別為M、N,求證:ABM∽△BCN;

(2)如圖2,P是邊BC上一點(diǎn),∠BAP=C,tanPAC=,求tanC的值;

(3)如圖3,D是邊CA延長(zhǎng)線(xiàn)上一點(diǎn),AE=AB,DEB=90°,sinBAC=,,直接寫(xiě)出tanCEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.已知:在矩形中,是對(duì)角線(xiàn),于點(diǎn),于點(diǎn);

1)如圖1,求證:;

2)如圖2,當(dāng)時(shí),連接.,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖2中四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于矩形面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①已知拋物線(xiàn)y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對(duì)稱(chēng)軸與x軸的交點(diǎn)為E.

(1)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)E坐標(biāo)為_____,點(diǎn)A的坐標(biāo)為_____

(2)若以E為圓心的圓與y軸和直線(xiàn)BC都相切,試求出拋物線(xiàn)的解析式;

(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點(diǎn),過(guò)點(diǎn)Qy軸的平行線(xiàn),與直線(xiàn)BC交于點(diǎn)M,與拋物線(xiàn)交于點(diǎn)N,連結(jié)CN,將CMN沿CN翻折,M的對(duì)應(yīng)點(diǎn)為M′.在圖②中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動(dòng),某校隨機(jī)調(diào)查了部分學(xué)生對(duì)垃圾分類(lèi)知識(shí)的掌握情況.調(diào)查選項(xiàng)分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若該校學(xué)生有2000名,根據(jù)調(diào)查結(jié)果,估計(jì)該校“非常了解”與“比較了解”的學(xué)生共有    名;

3)已知“非常了解”的同學(xué)有3名男生和1名女生,從中隨機(jī)抽取2名進(jìn)行垃圾分類(lèi)的知識(shí)交流,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB12,P是邊AB上一點(diǎn),把△PBC沿直線(xiàn)PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過(guò)點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F

1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:△AEB≌△DEC;

2)如圖2,當(dāng)AD25,且AEDE時(shí),求的值;

3)如圖3,當(dāng)BEEF108時(shí),求BP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若三角形的一條角平分線(xiàn)與被平分的角的一邊相等,則稱(chēng)這個(gè)三角形為弱等腰三角形,這條角平分線(xiàn)叫做這個(gè)三角形的弱線(xiàn),如圖①,AD是△ABC的角平分線(xiàn),當(dāng)ADAB時(shí),則△ABC弱等腰三角形,線(xiàn)段AD是△ABC弱線(xiàn)

1)如圖②,在△ABC中.∠B60°,∠C45°.求證:△ABC弱等腰三角形

2)如圖③,在矩形ABCD中,AB3,BC4.以B為圓心在矩形內(nèi)部作,交BC于點(diǎn)E,點(diǎn)F上一點(diǎn),連結(jié)CF.且CF有另一個(gè)交點(diǎn)G.連結(jié)BG.當(dāng)BG是△BCF的“弱線(xiàn)”時(shí),求CG的長(zhǎng).

3)已知△ABC是“弱等腰三角形”,AD是“弱線(xiàn)”,且AB3BD,求ACBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班學(xué)生做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),給出的某一結(jié)果出現(xiàn)的頻率折線(xiàn)圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是(  )

A.拋一枚硬幣,出現(xiàn)正面朝上

B.從標(biāo)有1,2,34,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)

C.從一個(gè)裝有6個(gè)紅球和3個(gè)黑球的袋子中任取一球,取到的是黑球

D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

查看答案和解析>>

同步練習(xí)冊(cè)答案