【題目】如圖,△ABC中,∠ACB=90°, CD⊥AB于點(diǎn)D,∠A=30°,BD=1.5cm ,則AB=______cm.
【答案】6
【解析】在直角三角形ABC中,由∠A的度數(shù)求出∠B的度數(shù),在直角三角形BCD中,可得出∠BCD度數(shù)為30°,根據(jù)直角三角形中,30°所對的直角邊等于斜邊的一半,得到BC=2BD,由BD的長求出BC的長,在直角三角形ABC中,同理得到AB=2BC,由BC的長即可求出AB的長.
解:∵△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,BD=1.5cm,
可得BC=2BD=3cm,
在Rt△ABC中,∠A=30°,BC=3cm,
則AB=2BC=6cm.
故答案為:6.
“點(diǎn)睛”此題考查了含30°角直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】說明命題“若a2>b2,則a>b.”是假命題,舉反例正確的是( 。
A. a=2,b=3B. a=﹣2,b=3C. a=3,b=﹣2D. a=﹣3,b=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程(1-2k)x2+12x-10=0有實數(shù)根,則k的最大整數(shù)值為( )
A. 1 B. 2 C. -1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(x﹣2y)(x+2y)的結(jié)果是( )
A. x2﹣2y2 B. x2﹣4y2 C. x2+4xy+4y2 D. x2﹣4xy+4y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式正確的是( )
A. (a+b)2=a2+b2 B. (x+6)(x﹣6)=x2﹣6
C. (2x+3)2=2x2﹣12x+9 D. (2x﹣1)2=4x2﹣4x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+C的圖象過點(diǎn)A(﹣3,0),C(0,3).
(1)求拋物線的解析式;
(2)探究:在拋物線的對稱軸DE上是否存在點(diǎn)P,使得點(diǎn)P到直線AD和到x軸的距離相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)探究:在對稱軸DE左側(cè)的拋物線上是否存在點(diǎn)F,使得2S△FBC=3S△EBC?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A. 有兩個角是直角的四邊形是矩形;
B. 兩條對角線相等的四邊形是矩形;
C. 兩條對角線垂直且相等的四邊形是矩形;
D. 四個角都是直角的四邊形是矩形;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com