【題目】如圖,一個(gè)半徑為的圓形紙片在邊長(zhǎng)為的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片“不能接觸到的部分”的面積是____________.
【答案】
【解析】
過圓形紙片的圓心O1作兩邊的垂線,垂足分別為D,E,連AO1,則在Rt△ADO1中,可求得AD=,四邊形ADO1E的面積等于三角形ADO1的面積的2倍,還可求出扇形O1DE的面積,所求面積等于四邊形ADO1E的面積減去扇形O1DE的面積的三倍.
如圖,當(dāng)圓形紙片運(yùn)動(dòng)到與∠A的兩邊相切的位置時(shí),
過圓形紙片的圓心O1作兩邊的垂線,垂足分別為D,E,
連結(jié)AO1,則Rt△ADO1中,∠O1AD=30°,O1D=r,AD=,
∴
由S四邊形ADO1E=
∵由題意,∠DO1E=120°,得S扇形O1DE=
∴圓形紙片不能接觸到的部分的面積為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,我市某中學(xué)開展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒?dòng),賽后隨機(jī)抽取了部分參賽學(xué)生的成績(jī),按得分劃分為A,B,C,D四個(gè)等級(jí),并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
等級(jí) | 成績(jī)(s) | 頻數(shù)(人數(shù)) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根據(jù)以上信息,解答以下問題:
(1)表中的x= ;
(2)扇形統(tǒng)計(jì)圖中m= ,n= ,C等級(jí)對(duì)應(yīng)的扇形的圓心角為 度;
(3)該校準(zhǔn)備從上述獲得A等級(jí)的四名學(xué)生中選取兩人做為學(xué)校“五好小公民”志愿者,已知這四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請(qǐng)用列表或畫樹狀圖的方法求恰好選取的是a1和b1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,點(diǎn)D是弧AC的中點(diǎn),連結(jié)BD交AC于點(diǎn)E,過D點(diǎn)作⊙O的切線交BC的延長(zhǎng)線于F.
(1)求證:∠FDB = ∠AED.
(2)若⊙O 的半徑為5,tan∠FBD=,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫作法,保留作圖痕跡);
(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與坐標(biāo)軸交于點(diǎn)A(1, 0)和點(diǎn)C.經(jīng)過點(diǎn)A的直線與二次函數(shù)圖像交于另一點(diǎn)B,點(diǎn)B與點(diǎn)C關(guān)于二次函數(shù)圖像的對(duì)稱軸對(duì)稱.
(1)求一次函數(shù)表達(dá)式;
(2)點(diǎn)P在二次函數(shù)圖像的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使△ADC與△BDA相似,可以添加一個(gè)條件.下列添加的條件中錯(cuò)誤的是( )
A. ∠ACD=∠DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把正邊形()的各邊三等分,分別以居中的那條線段為一邊向外作正邊形,并去掉居中的那條線段,得到一個(gè)新的圖形叫做正邊形的“擴(kuò)展圖形”,并將它的邊數(shù)記為,如圖,將正三角形進(jìn)行上述操作后得到其“擴(kuò)展圖形”,且.圖、圖分別是正五邊形、正六邊形的“擴(kuò)展圖形”。
(1)如圖,在的正方形網(wǎng)格中用較粗的虛線畫有一個(gè)正方形,請(qǐng)?jiān)趫D中用實(shí)線畫出此正方形的“擴(kuò)展圖形”;
(2)已知,則圖中=_____,根據(jù)以上規(guī)律,正邊形的“擴(kuò)展圖形”的=______;(用含的式子表示)
(3)已知,且,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求也越來越高。為了了解月中旬長(zhǎng)春市城區(qū)的空氣質(zhì)量情況,某校“綜合實(shí)踐環(huán)境調(diào)查”小組,從天氣預(yù)報(bào)網(wǎng)抽取了朝陽區(qū)和南關(guān)區(qū)這兩個(gè)城區(qū)年月日——年月日的空氣質(zhì)量指數(shù),作為樣本進(jìn)行統(tǒng)計(jì),過程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
朝陽區(qū) | ||||||||||
南關(guān)區(qū) |
整理、描述數(shù)據(jù)
按下表整理、描述這兩城區(qū)空氣質(zhì)量指數(shù)的數(shù)據(jù).
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 中度污染 | 重度污染 |
朝陽區(qū) | |||||
南關(guān)區(qū) |
(說明:空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為優(yōu);空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為良;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為輕微污染;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為中度污染;空氣質(zhì)量指數(shù)時(shí),空氣質(zhì)量為重度污染.)
分析數(shù)據(jù)
兩城區(qū)的空氣質(zhì)量指數(shù)的平均數(shù)、中位數(shù)、方差如下表所示.
城區(qū) | 平均數(shù) | 中位數(shù) | 方差 |
朝陽區(qū) | |||
南關(guān)區(qū) |
請(qǐng)將以上兩個(gè)表格補(bǔ)充完整.
得出結(jié)論可以推斷出哪個(gè)城區(qū)這十天中空氣質(zhì)量情況比較好?請(qǐng)至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com