【題目】點是內(nèi)一點,且點到三邊的距離相等,,則________.
【答案】
【解析】
根據(jù)三角形內(nèi)角和定理求出∠ABC+∠ACB=130°,再根據(jù)角平分線上的點到角的兩邊的距離相等判斷出點O是△ABC角平分線的交點,再根據(jù)角平分線的定義求出∠OBC+∠OCB的度數(shù),然后在△OBC中,利用三角形內(nèi)角和定理列式進行計算即可得解.
如圖,
∵∠A=50°,
∴∠ABC+∠ACB=180°-50°=130°,
∵點O到△ABC三邊的距離相等,
∴點O是△ABC角平分線的交點,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
故答案為:115°.
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數(shù)量關系為______和位置關系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點P0的坐標為(,),將線段OP0按逆時針方向旋轉(zhuǎn)45°,再將其長度伸長為OP0的2倍,得到線段OP1;又將線段OP1按逆時針方向旋轉(zhuǎn)45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點P2017的坐標為( )
A. (,) B. (0,22018) C. (,) D. (22018,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),點O為坐標原點,點A在x軸負半軸上,點B、C分別在x軸、y軸正半軸上,且OB=2OA,OBOC=OCOA=2.
(1)求點C的坐標;
(2)點P從點A出發(fā)以每秒1個單位的速度沿AB向點B勻速運動,同時點Q從點B出發(fā)以每秒3個單位的速度沿BA向終點A勻速運動,當點Q到達終點A時,點P、Q均停止運動,設點P運動的時間為t(t>0)秒,線段PQ的長度為y,用含t的式子表示y,并寫出相應的t的范圍;
(3)在(2)的條件下,過點P作x軸的垂線PM,PM=PQ,是否存在t值使點O為PQ中點? 若存在求t值并求出此時△CMQ的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,點P為BC邊上一動點,連接AP,將線段AP繞P點順時針旋轉(zhuǎn)90°,點A恰好落在直線CD上點E處.
(1)如圖1,點E在線段CD上,求證:AD+DE=2AB;
(2)如圖2,點E在線段CD的延長線上,且點D為線段CE的中點,在線段BD上取點F,連接AF、PF,若AF=AB.求證:∠APF=∠ADB.
(3)如圖3,點E在線段CD上,連接BD,若AB=2,BD∥PE,則DE= . (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在甲、乙兩名同學中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:
甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是______ ,乙成績的平均數(shù)是______ ;
(2)經(jīng)計算知S甲2=6,S乙2=42.你認為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com