【題目】已知:m,n是方程x2﹣6x+5=0的兩個(gè)實(shí)數(shù)根,且mn,拋物線y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)Am,0),B(0,n).

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C,D的坐標(biāo)和△BCD的面積.

【答案】(1)y=﹣x2﹣4x+5;(2)15.

【解析】

(1)首先解方程求得mn的值,得到AB的坐標(biāo),然后利用待定系數(shù)法即可求得解析式;

(2)首先求得CD的坐標(biāo),作DEy軸于點(diǎn)E,根據(jù)SBCDS梯形OCDESDEBSOBC求解.

解:(1)解方程x2﹣6x+5=0,

解得:x1=1,x2=5,

m=1,n=5.

A的坐標(biāo)是(1,0),B的坐標(biāo)是(0,5).

代入二次函數(shù)解析式得: ,

解得:

則函數(shù)的解析式是y=﹣x2﹣4x+5;

(2)解方程﹣x2﹣4x+5=0,

解得:x1=﹣5,x2=1.

C的坐標(biāo)是(﹣5,0).

y=﹣x2﹣4x+5=﹣(x2+4x+4)+9=﹣(x+2)2+9

D的坐標(biāo)是(﹣2,9).

DEy軸于點(diǎn)E,則E坐標(biāo)是(0,9).

S梯形OCDEOC+DEOE×(2+5)×9=

SDEBBEDE×4×2=4,

SOBCOCOB×5×5=

SBCDS梯形OCDESDEBSOBC﹣4﹣=15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,OPAD的外接圓.

(1)求證:AB是⊙O的切線;

(2)若AC=8,tanBAC=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并解決相應(yīng)問(wèn)題:

材料一:換元法是數(shù)學(xué)中的重要方法,利用換元法可以從形式上簡(jiǎn)化式子,在求解某些特殊方程時(shí),利用換元法常?梢赃_(dá)到轉(zhuǎn)化的目的,例如在求解一元四次方程,就可以令,則原方程就被換元成,解得 t 1,即,從而得到原方程的解是 x 1

材料二:楊輝三角形是中國(guó)數(shù)學(xué)上一個(gè)偉大成就,在中國(guó)南宋數(shù)學(xué)家楊輝 1261 年所著的《詳解九章算法》一書(shū)中出現(xiàn),它呈現(xiàn)了某些特定系數(shù)在三角形中的一種有規(guī)律的幾何排列,下圖為楊輝三角形:

……………………………………

1)利用換元法解方程:

2)在楊輝三角形中,按照自上而下、從左往右的順序觀察, an 表示第 n 行第 2 個(gè)數(shù)(其中 n≥4),bn 表示第 n 行第 3 個(gè)數(shù),表示第行第 3 個(gè)數(shù),請(qǐng)用換元法因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O的直徑為4cm,A是圓上一固定點(diǎn),弦BC的長(zhǎng)為2cm,當(dāng)△ABC為等腰三角形時(shí),其底邊上的高為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(n+1)xm+mx+1﹣n(m,n為實(shí)數(shù))

(1)當(dāng)m,n取何值時(shí),此函數(shù)是我們學(xué)過(guò)的哪一類(lèi)函數(shù)?它一定與x軸有交點(diǎn)嗎?請(qǐng)判斷并說(shuō)明理由;

(2)若它是一個(gè)二次函數(shù),假設(shè)n>﹣1,那么:

①當(dāng)x<0時(shí),y隨x的增大而減小,請(qǐng)判斷這個(gè)命題的真假并說(shuō)明理由;

②它一定經(jīng)過(guò)哪個(gè)點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)

(1)畫(huà)出 △ABC關(guān)于y 軸的對(duì)稱(chēng)圖形 △A1B1C1;

(2)畫(huà)出將△ABC 繞原點(diǎn) O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2

(3)求(2)中線段 OA掃過(guò)的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ABC=90°,ABBC,E、M分別為AB、AC上的點(diǎn),連接CE,BM交于點(diǎn)G,且BMCE,OAC的中點(diǎn),連接BOCE于點(diǎn)N

(1)如圖,若AB=6,2MOAM,求BM的長(zhǎng);

(2)如圖,連接OGAG,若AGOG,求證:ACBG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2的圖象交于 A(﹣1,a),B 兩點(diǎn).

(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);

(2)觀察圖象,請(qǐng)直接寫(xiě)出滿(mǎn)足 y≤2 的取值范圍;

(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若POB 的面積為 1,請(qǐng)直接寫(xiě)出點(diǎn) P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,CBD=30°,則DF的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案