【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到新函數(shù)圖象,其中原函數(shù)圖象上的兩點A(1,m)、B(4,n)平移后對應(yīng)新函數(shù)圖象上的點分別為點A′、B′.若陰影部分的面積為6,則新函數(shù)的表達式為(  )

A. B.

C. D.

【答案】B

【解析】

先根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征求出A、B兩點的坐標(biāo),再過AACx軸,交B′B的延長線于點C,則C(4,1),AC=4﹣1=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為6(圖中的陰影部分),得出AA′=2,然后根據(jù)平移規(guī)律即可求解.

解:∵函數(shù)y=(x﹣2)2+1的圖象過點A(1,m),B(4,n),

m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,

A(1,1),B(4,2),

AACx軸,交B′B的延長線于點C,則C(4,1),

AC=4﹣1=3,

∵曲線段AB掃過的面積為6(圖中的陰影部分),

ACAA′=3AA′=6,

AA′=2,

即將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移2個單位長度得到一條新函數(shù)的圖象,

∴新圖象的函數(shù)表達式是y=(x﹣2)2+3.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以的一邊為邊畫等腰三角形,使得它的第三個頂點在的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多可畫幾個?(

A.9B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.

(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k為實數(shù),關(guān)于x的方程為x2﹣2(k+1)x+k2=0.

(1)請判斷x=﹣1是否可為此方程的根,說明理由.

(2)設(shè)方程的兩實根為x1,x2,當(dāng)2x1+2x2+1=x1x2時,試求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)探究新知:如圖1,已知△ABC△ABD的面積相等, 試判斷ABCD的位置關(guān)系,并說明理由.

2)結(jié)論應(yīng)用:如圖2,點M,N在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,垂足分別為EF 試證明:MN∥EF

3)變式探究:如圖3,點M,N在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,過點MMG⊥x軸,過點NNH⊥y軸,垂足分別為E、F、G、H 試證明:EF ∥GH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CBAD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁薄型紙比厚型紙輕0.8克,求A4薄型紙每頁的質(zhì)量.(墨的質(zhì)量忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.

(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);

(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A是半徑為6cm的⊙O上的定點,動點PA出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當(dāng)點P回到A時立即停止運動.設(shè)點P運動時間為t(s);

(1)當(dāng)t=6s時,∠POA的度數(shù)是________;

(2)當(dāng)t為多少時,∠POA=120°;

(3)如果點BOA延長線上的一點,且AB=AO,問t為多少時,POB為直角三角形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案