【題目】若 是m+n+3的算術(shù)平方根, 是m+2n的立方根,則B-A的立方根是( )
A.1
B.-1
C.0
D.無法確定
【答案】B
【解析】解答:∵ 是m+n+3的算術(shù)平方根,∴m-n=2,∵ 是m+2n的立方根,∴m-2n+3=3.∴ 解得 ∴ , ,∴B-A=-1.
分析:根據(jù)算術(shù)平方根和立方根的定義,可知m-n=2和m-2n+3=3,從而解出m , n .
【考點精析】利用算數(shù)平方根和立方根對題目進行判斷即可得到答案,需要熟知正數(shù)a的正的平方根叫做a的算術(shù)平方根;正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零;如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a 的立方根(或a 的三次方根);一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并補充下面推理過程:
(1)如圖1,已知點A是BC外一點,連接AB,AC.求∠BAC+∠B+∠C的度數(shù). 解:過點A作ED∥BC,所以∠B= ,∠C= .
又因為∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).
(3)已知AB∥CD,點C在點D的右側(cè),∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間. Ⅰ.如圖3,點B在點A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為 °.
Ⅱ.如圖4,點B在點A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為 °.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為8cm,P為直線l上一點,OP=4cm,那么直線l與⊙O的公共點有( 。
A.0個B.1個C.2個D.1個或2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.﹣0.064的立方根是0.4
B.﹣9的平方根是±3
C.16的立方根是
D.0.01的立方根是0.000001
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠1與∠2是直線a與直線b被直線c所截得的內(nèi)錯角,且有∠1=50°,則∠2=( )
A.130°
B.50°
C.80°
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項式乘法中不能用平方差公式計算的是( )
A.(2x2y﹣1)(﹣2x2﹣1)
B.(a3﹣b3)(b3﹣a3)
C.(a+b)(a﹣b)
D.(a2+b2)(b2﹣a2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某教研機構(gòu)為了了解在校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機抽取某校部分初中學(xué)生進行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
某校初中生閱讀數(shù)學(xué)教科書情況統(tǒng)計圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2300名,請估計該校“不重視閱讀數(shù)學(xué)教科書”的初中人數(shù);
(3)①根據(jù)上面的統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x數(shù)學(xué)教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,你認為應(yīng)該如何進行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:BD平分∠ABC,F(xiàn)在AB上,G在AC上,F(xiàn)C與BD相交于點H.∠GFH+∠BHC=180°,求證:∠1=∠2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com