【題目】安全使用電瓶車可以大幅度減少因交通事故引發(fā)的人身傷害,為此交警部門在全區(qū)范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽部分使用電瓶車的市民,就騎電瓶車戴安全帽情況(:每次戴、:經(jīng)常戴、:偶爾戴、:都不戴)進行問卷調(diào)查,將相關(guān)的數(shù)據(jù)制成如下統(tǒng)計圖表.
活動前騎電瓶車戴安全帽情況統(tǒng)計表
類別 | 人數(shù) |
68 | |
245 | |
510 | |
177 | |
合計 | 1000 |
(1)宣傳活動前,在抽取的市民中哪一類別的人數(shù)最多?占抽取人數(shù)的百分之幾?
(2)該區(qū)約有37萬人使用電瓶車,請估計活動前全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù);
(3)小明認為,宣傳活動后騎電瓶車“都不戴”安全帽的人數(shù)為178,比活動前增加了1人,因此交警部門開展的宣傳活動沒有效果.小明分析數(shù)據(jù)的方法是否合理?請結(jié)合統(tǒng)計圖表,談?wù)勀銓痪块T宣傳活動的效果的看法.
【答案】(1)C類偶爾戴的市民人數(shù)最多,占比為51%;(2)65490人;(3)小明分析數(shù)據(jù)的方法不合理,活動有效果.
【解析】
(1)根據(jù)圖表給出的數(shù)據(jù)得出“偶爾戴”(或C類)的人數(shù)最多,用“偶爾戴”的人數(shù)除以總?cè)藬?shù)即可得出答案;
(2)用該區(qū)的總?cè)藬?shù)乘以“都不戴”安全帽的人數(shù)所占的百分比即可;
(3)分別求出宣傳活動前后騎電瓶車“都不戴”安全帽所占的百分比,再進行比較,即可得出小明的分析不合理.
解:(1)C類偶爾戴的區(qū)民人數(shù)最多,占比為:×100%=51%;
(2)×370000=65490人,
答:活動前全區(qū)騎電瓶車“都不戴”安全帽的總?cè)藬?shù)約有65490人;
(3)不合理.
活動開展前,“都不戴”占比為:×100%=17.7%,
“每次戴”占比為:×100%=6.8%,
活動開展后,“都不戴”占比為:×100%=8.9%,
“每次戴”占比為:×100%=44.8%,
∵“都不戴”的人數(shù)所占的百分比明顯下降,而“每次戴”百分比明顯上升,
∴說明活動有效果.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)y(k>0,x>0)的圖象經(jīng)過AC的中點D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)定義新函數(shù)
(1)若則新函數(shù) ;
(2)若新函數(shù)的解析式為則 , ;
(3)設(shè)新函數(shù)頂點為.
①當(dāng)為何值時,有最大值,并求出最大值;
②求與的函數(shù)解析式;
(4)請你探究:函數(shù)與新函數(shù)分別經(jīng)過定點,函數(shù)的頂點為,新函數(shù)上存在一點,使得以點為頂點的四邊形為平行四邊形時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OBC的邊BC∥x軸,過點C的雙曲線y=(k≠0)與△OBC的邊OB交于點D,且OD:DB=1:2,若△OBC的面積等于8,則k的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)y=(k<0)的圖象相交于點A,并與x軸交于點C,S△AOC=15.點D是線段AC上一點,CD:AC=2:3.
(1)求k的值;
(2)根據(jù)圖象,直接寫出當(dāng)x<0時不等式>﹣x+5的解集;
(3)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,甲車間工人加工零件,工作中有一次停產(chǎn)檢修機器,然后以原來的工作效率繼續(xù)加工,由于任務(wù)緊急,乙車間加入與甲車間一起生產(chǎn)零件,兩車間各自加工零件的數(shù)量y(個)與甲車間加工時間t(時)之間的函數(shù)圖象如圖所示.
(1)求乙車間加工零件的數(shù)量y與甲車間加工時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
(2)求甲車間加工零件總量a.
(3)當(dāng)甲、乙兩車間加工零件總數(shù)量為320個時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時節(jié),楊樹的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(調(diào)查問卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖:
調(diào)查問卷
治理楊絮:您選哪一項? (每人只選一項)
A.減少楊樹新增面積,控制楊樹每年的栽種量;
B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹;
C.選育無絮楊品種,并推廣種植;
D.對楊樹注射生物干擾素,避免產(chǎn)生飛絮;
E.其他.
根據(jù)以上信息,解答下列問題:
(1)在扇形統(tǒng)計圖中,求扇形的圓心角度數(shù);
(2)補全條形統(tǒng)計圖;
(3)若該市約有萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點P是直線AB上任意一點,聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對角線BD交于點Q(與B、D不重合),且∠PCQ=30°.
(1)如圖,當(dāng)點P在邊AB上時,如果BP=3,求線段PC的長;
(2)當(dāng)點P在射線BA上時,設(shè),求y關(guān)于的函數(shù)解析式及定義域;
(3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點E,如果與相似,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形的邊延長線上一點,連接,過頂點作,垂足為,交邊于點.
(1)求證:.
(2)連接,求的大。
(3)過點作交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com