【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.
(1)求b的值;
(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2.
①當x2﹣x1=3時,結(jié)合函數(shù)圖象,求出m的值;
②把直線PB下方的函數(shù)圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進甲、乙兩種運動鞋,其中甲、乙兩種運動鞋的進價和售價如表(進價大于50元)
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣4 |
售價(元/雙) | 160 | 150 |
已知:用3000元購進甲種運動鞋的數(shù)量比用2400元購進乙種運動鞋的數(shù)量多5.
(1)求m的值;
(2)設(shè)該商場應(yīng)購進甲種運動鞋t雙,兩種鞋共200雙,商場銷售完這批鞋可獲利y元,請求出y關(guān)于t的函數(shù)解析式;
(3)商場計劃在(2)的條件下,總進價不低于19520元,且不超過19532元,問該專賣店有哪幾種進貨方案?
(4)求該專賣店要獲得最大利潤的進貨方案及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù):
﹣3.1,3.1415,﹣,+31,0.618,﹣,0,﹣1,﹣(﹣3),填在相應(yīng)的集合里
分數(shù)集合: ;
整數(shù)集合: ;
非負整數(shù)集合: ;
正有理數(shù)集合: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學學科期末質(zhì)量監(jiān)控情況,進行了抽樣調(diào)查,過程如下,請將有關(guān)問題補充完整.
收集數(shù)據(jù):隨機抽取甲乙兩所學校的20名學生的數(shù)學成績進行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計,表格中m的值是 .
得出結(jié)論:
a若甲學校有400名初二學生,估計這次考試成績80分以上人數(shù)為 .
b可以推斷出 學校學生的數(shù)學水平較高,理由為 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑作⊙O,過點A作⊙O的切線AC,連結(jié)BC,交⊙O于點D,點E是BC邊的中點,連結(jié)AE.
(1)求證:∠AEB=2∠C;
(2)若AB=6,,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若AC=BF,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,P為CD中點,點Q為AB上的動點(不與A,B重合).過Q作QM⊥PA于M,QN⊥PB于N.設(shè)AQ的長度為x,QM與QN的長度和為y.則能表示y與x之間的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com