【題目】如圖,在中,,,.動點在邊上,以點為圓心,長為半徑的分別交、于點、,連接.
若點為邊上的中點(如圖),請你判斷直線與的位置關系,并證明你的結論;
當時(如圖),請你求出此時弦的長.
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答下列問題:
在一個不透明的口袋中有個紅球和若干個白球,這些球除顏色不同外其他都相同,請通過以下實驗估計口袋中白球的個數:從口袋中隨機摸出一球,記下顏色,再把它放回袋中,不斷重復上述過程,實驗總共摸了次,其中有次摸到了紅球,那么估計口袋中有白球多少個?
請思考并作答:
在一個不透明的口袋里裝有若干個形狀、大小完全相同的白球,在不允許將球倒出來的情況下,如何估計白球的個數(可以借助其它工具及用品)?寫出解決問題的主要步驟及估算方法,并求出結果(其中所需數量用、、等字母表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象經過點A(-2,6),且與x軸相交于點B,與正比例函數y=3x的圖象交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸上,且滿足S△COD=S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,3)、B(3,0),以點B為圓心、2為半徑的⊙B上有一動點P.連接AP,若點C為AP的中點,連接OC,則OC的最小值為( )
A. 1 B. ﹣1 C. D. 2﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】書店老板去圖書批發(fā)市場購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時,每本書的進價比第一次提高了 20%,他用1500 元所購買的數量比第一次多 10 本.
(1)求第一次購買的圖書,每本進價多少元?
(2)第二次購買的圖書,按每本 10 元售出 200 本時,出現滯銷,剩下的圖書降價后全部 售出,要使這兩次銷售的總利潤不低于 2100 元,每本至多降價多少元?(利潤=銷售收入一進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數,的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點點A在點B的左側,與x軸負半軸交于點C.
填空:該拋物線的“夢想直線”的解析式為______,點A的坐標為______,點B的坐標為______;
如圖,點M為線段CB上一動點,將以AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的“夢想三角形”,求點N的坐標;
當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com