【題目】如圖,點(diǎn)A為函數(shù)y=(x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y=(x>0)的圖象于點(diǎn)B,點(diǎn)Cx軸上一點(diǎn),且AO=AC,則△OBC的面積為____

【答案】6

【解析】

根據(jù)題意可以分別設(shè)出點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)O、A、B在同一條直線上可以得到A、B的坐標(biāo)之間的關(guān)系,由AO=AC可知點(diǎn)C的橫坐標(biāo)是點(diǎn)A的橫坐標(biāo)的2倍,從而可以得到△OBC的面積.

設(shè)點(diǎn)A的坐標(biāo)為(a,),點(diǎn)B的坐標(biāo)為(b,),

∵點(diǎn)Cx軸上一點(diǎn),且AO=AC,

∴點(diǎn)C的坐標(biāo)是(2a,0),

設(shè)過點(diǎn)O(0,0),A(a, )的直線的解析式為:y=kx,

=ka,

解得k=,

又∵點(diǎn)B(b, )y=x上,

=b,解得, == (舍去),

∴S△OBC==6.

故答案為:6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,內(nèi)角與外角的平分線相交于點(diǎn),,交,連接、,下列結(jié)論:①;②;③垂直平分;④.其中正確的是(

A. ①②④B. ①③④C. ②③④D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的角平分線交于點(diǎn),點(diǎn)45兩部分,則的周長為(  )

A.24B.26C.28D.2628

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP2,點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中,建立如圖所示的平面真角坐標(biāo)系,已知格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上)

1)畫出關(guān)于直線對(duì)稱的;并寫出點(diǎn)、、的坐標(biāo).

2)在直線上找一點(diǎn),使最小,在圖中描出滿足條件的點(diǎn)(保留作圖痕跡),并寫出點(diǎn)的坐標(biāo)(提示:直線是過點(diǎn)且垂直于軸的直線)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾不落地,城市更美麗.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生是否隨手丟垃圾這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息,解答下列問題:

(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生是否隨手丟垃圾情況的眾數(shù)是   ;

(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中經(jīng)常隨手丟垃圾的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)上一點(diǎn).

1)如圖,平分.求證:;

2)如圖,點(diǎn)在線段上,且,,求證:

3)如圖,,過點(diǎn)作的延長線于點(diǎn),連接,過點(diǎn)作,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線lAC:y=﹣x軸、y軸分別為A、C兩點(diǎn),直線BCACx軸于點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo)及直線BC的解析式;

(2)將△OBC關(guān)于BC邊翻折,得到△O′BC,過點(diǎn)O′作直線O′E垂直x軸于點(diǎn)E,F(xiàn)y軸上一點(diǎn),P是直線O′E上任意一點(diǎn),P、Q兩點(diǎn)關(guān)于x軸對(duì)稱,當(dāng)|PA﹣PC|最大時(shí),請(qǐng)求出QF+FC的最小值;

(3)M是直線O′E上一點(diǎn),且QM=3,在(2)的條件下,在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以Q、F、M、N四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且ADCE,則∠ADC+BEA=(  )

A.180°B.170°C.160°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案