【題目】已知△ABC是等腰三角形,AB=AC

1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DB EC.(填“=”

2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1PC=2,PA=3,求∠BPC的度數(shù).

【答案】1=;(2)成立,證明見(jiàn)解析;(3135°.

【解析】

試題(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;

2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE

3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計(jì)算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,在簡(jiǎn)單計(jì)算即可.

試題解析:(1∵DE∥BC,

∵AB=AC,

∴DB=EC,

故答案為=,

2)成立.

證明:由易知AD=AE,

由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC

∵AD=AE,AB=AC

∴△DAB≌△EAC

∴DB=CE,

3)如圖,

△CPB繞點(diǎn)C旋轉(zhuǎn)90°△CEA,連接PE

∴△CPB≌△CEA,

∴CE=CP=2AE=BP=1,∠PCE=90°,

∴∠CEP=∠CPE=45°

Rt△PCE中,由勾股定理可得,PE=,

△PEA中,PE2=2=8AE2=12=1,PA2=32=9,

∵PE2+AE2=AP2

∴△PEA是直角三角形

∴∠PEA=90°,

∴∠CEA=135°,

∵△CPB≌△CEA

∴∠BPC=∠CEA=135°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(zhǎng)(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說(shuō):噢,我知道路燈有多高了!同學(xué)們,請(qǐng)你和小明一起解答這個(gè)問(wèn)題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(m,n),則向量可以用點(diǎn)P的坐標(biāo)表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則互相垂直.

下面四組向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的組有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AD>AB,點(diǎn)PCD邊上的任意一點(diǎn)(不含C,D兩端點(diǎn)),過(guò)點(diǎn)PPFBC,交對(duì)角線BD于點(diǎn)F.

(1)如圖1,將PDF沿對(duì)角線BD翻折得到QDF,QFAD于點(diǎn)E.求證:DEF是等腰三角形;

(2)如圖2,將PDF繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)得到P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).

①若0°<α<BDC,即DF'在∠BDC的內(nèi)部時(shí),求證:DP'C∽△DF'B.

②如圖3,若點(diǎn)PCD的中點(diǎn),DF'B能否為直角三角形?如果能,試求出此時(shí)tanDBF'的值,如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OAOB=4,∠AOB=60°,半A的半徑為1,點(diǎn)C是半圓上任意一點(diǎn),連結(jié)OC,把OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)6

0°到OD的位置,連結(jié)BD

(1)如圖1,求證:ACBD

(2)如圖2,當(dāng)OC與半圓相切于點(diǎn)C時(shí),求CD的長(zhǎng).

(3)直接寫(xiě)出△AOC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截,紅方行駛1000米到達(dá)C處后,因前方無(wú)法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同的距離,剛好在D處成功攔截藍(lán)方,求攔截點(diǎn)D處到公路的距離(結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:在一次數(shù)學(xué)社團(tuán)活動(dòng)課上,同學(xué)們測(cè)量一座古塔CD的高度,他們首先在A處安置測(cè)量器,測(cè)得塔頂C的仰角∠CFE30°,然后往塔的方向前進(jìn)100米到達(dá)B處,此時(shí)測(cè)得塔頂C的仰角∠CGE60°,已知測(cè)量器高1.5米,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).

(1)求b、c的值;

(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸,并在所給坐標(biāo)系中畫(huà)出該函數(shù)的圖象;

(3)該函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于AB兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過(guò)點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求b、c的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫(xiě)出m的取值范圍.

3)當(dāng)點(diǎn)PA、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求Cm之間的函數(shù)關(guān)系式,并寫(xiě)出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案