【題目】中,,的頂點(diǎn)是底邊的中點(diǎn),兩邊分別與交于點(diǎn)

1)如圖1 ,當(dāng)的位置變化時(shí),是否隨之變化?證明你的結(jié)論;

2)如圖2,當(dāng),當(dāng) °時(shí),(1)中的結(jié)論仍然成立,求出此時(shí)的值.

【答案】1BF+CEa,是定值,不變.見(jiàn)解析;(2609

【解析】

1)結(jié)論:BFCE=a,是定值.如圖1中,連接AD.只要證明△BDF≌△ADE即可解決問(wèn)題;
2)當(dāng)∠EDF=60°時(shí),BFEC=9,是定值.連接AD,作DMABMDNACN.只要證明△DMF≌△DNEASA),推出FM=EN,由含30°的直角三角形的性質(zhì),推出BM=CN=,推出BFCE=BMFMCNEN=2BM,即可解決問(wèn)題.

解:(1)結(jié)論:BF+CE=a,是定值.

理由:如圖1中,連接AD

AB=AC,BAC=90°BD=CD,

ADBC,B=∠C=∠BAD=∠CAD=45°AD=BD=CD

∵∠EDF=∠ADB=90°,

∴∠BDF=∠ADE,

∴△BDF≌△ADEASA),

BF=AE

BF+CE=AE+CE=AC=a,是定值.

2)當(dāng)EDF=60°時(shí),BF+EC=9,是定值.

理由:如圖2中,連接AD,作DMABMDNACN

∵∠AMD=∠AND=90°,A=120°,

∴∠MDN=∠EDF=60°,

∴∠MDF=∠NDE,

AB=AC,BD=CD

∴∠BAD=∠CAD,

DMABM,DNACN

DM=DN,

∴△DMF≌△DNEASA),

FM=EN

AB=AC,BD=CD,

∴AD⊥BC

∵∠B=∠C=30°

∴AD=AB=AC=3,BAD=∠CAD=60°

DMAB,DNAC,

∴∠ADM=∠ADN=30°,

∴AM=AN=AD=

BM=CN=,

BF+CE=BMFM+CN+EN=2BM=9,是定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文化用品商店用元采購(gòu)一批書(shū)包,上市后發(fā)現(xiàn)供不應(yīng)求,很快銷(xiāo)售完了.商店又去采購(gòu)第二批同樣款式的書(shū)包,進(jìn)貨單價(jià)比第一次高元,商店用了元,所購(gòu)數(shù)量是第一次的.

1)求第一批采購(gòu)的書(shū)包的單價(jià)是多少元?

2)若商店按售價(jià)為每個(gè)書(shū)包元,銷(xiāo)售完這兩批書(shū)包,總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)問(wèn)題)在同一直角坐標(biāo)系內(nèi)直線,當(dāng)滿(mǎn)足什么條件時(shí),這兩條直線互相垂直?

探究問(wèn)題:我們采取一般問(wèn)題特殊化的策略來(lái)進(jìn)行探究.

探究一:如圖①,在同一直角坐標(biāo)系內(nèi)直線有怎樣的位置關(guān)系?

解:如圖①,設(shè)點(diǎn)在直線上,則點(diǎn)一定在直線上.過(guò)點(diǎn)分別作的垂線,垂足分別為

所以,在同一直角坐標(biāo)系內(nèi)直線互相垂直.

探究二:如圖②,在同一直角坐標(biāo)系內(nèi)直線上,則點(diǎn)一定在直線上.過(guò)點(diǎn)分別作軸的垂線,垂足分別為

,,

,

又∵

又∵

所以,在同一直角坐標(biāo)系內(nèi)直線互相垂直.

探究三:如圖③,在同一直角坐標(biāo)系內(nèi)直線有怎樣的位置關(guān)系?

(仿照上述方法解答,寫(xiě)出探究過(guò)程)

(1)在同一直角坐標(biāo)系內(nèi)直線,當(dāng)滿(mǎn)足數(shù)量關(guān)系為 時(shí),這兩條直線互相垂直.

(2)在同一直角坐標(biāo)系內(nèi)已知直線與直線,使它與直線互相垂直,的值為: ;兩直線垂足的坐標(biāo)為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷(xiāo)售價(jià)每降低50元時(shí),平均每天就能多售出4.

(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷(xiāo)售利潤(rùn)達(dá)到多少元?

(2)若設(shè)每部手機(jī)降低x,每天的銷(xiāo)售利潤(rùn)為y,試寫(xiě)出yx之間的函數(shù)關(guān)系式.

(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,平分,且,與相交于點(diǎn),邊的中點(diǎn),連接相交于點(diǎn),下列結(jié)論:;;;,其中正確的有__________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)EF分別是邊BC、AC上的點(diǎn),且BE=CFAE、BF交于點(diǎn)D

1)如圖1,求證:AE=BF

2)如圖2,過(guò)點(diǎn)AAGBF于點(diǎn)G,過(guò)點(diǎn)CCHAEBF延長(zhǎng)線于點(diǎn)H,若DBG中點(diǎn),求BHCH的值;

3)如圖3,在(2)的條件下,LBA延長(zhǎng)線上一點(diǎn),且FL=FB,△FLA的面積為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某測(cè)量隊(duì)在山腳A處測(cè)得山上樹(shù)頂仰角為45°(如圖),測(cè)量隊(duì)在山坡上前進(jìn)600米到D處,再測(cè)得樹(shù)頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹(shù)高為15米,則山高為(  )(精確到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分于點(diǎn),延長(zhǎng)至點(diǎn)平分,且的延長(zhǎng)線交于點(diǎn),若

求證:

的度數(shù);

若在圖中繼續(xù)作的平分線交于點(diǎn),作的平分線交于點(diǎn),作的平分線交于點(diǎn),以此類(lèi)推,作的平分線交于點(diǎn),請(qǐng)用含有的式了表示的度數(shù)(直接寫(xiě)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b(其中a、bm、n均為整數(shù)),

則有:a+b,∴am2+2n2,b2mn,這樣小明就找到了一種把類(lèi)似a+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a、bm、n均為正整數(shù)時(shí),若a+b,用含mn的式子分別表示a、b得:a   b   ;

(2)利用所探索的結(jié)論,用完全平方式表示出:7+4   

(3)請(qǐng)化簡(jiǎn):.

查看答案和解析>>

同步練習(xí)冊(cè)答案