【題目】如圖,∠BADCAE=90°,ABAD,AEAC,點(diǎn)DCE上,AFCB,垂足為F.

(1)AC=10,求四邊形ABCD的面積;

(2)求證:CE=2AF.

【答案】(1) 50;(2)證明見(jiàn)解析.

【解析】(1)求出∠BAC=EAD,根據(jù)SAS推出ABC≌△ADE,推出四邊形ABCD的面積=三角形ACE的面積,即可得出答案;
(2)過(guò)點(diǎn)AAGCD,垂足為點(diǎn)G,求出AF=AG,進(jìn)而求出CG=AG=GE,即可得出答案.

(1)∵∠BAD=CAE=90°,

∴∠BAC+CAD=EAD+CAD,

∴∠BAC=EAD.

ABCADE中,

AB=AD,BAC=DAE,AC=AE,

∴△ABC≌△ADE(SAS).

SABC=SADE,S四邊形ABCD=SABC+SACD=SADE+SACD

=SACEAC·AE=×102=50.

(2)∵△ACE是等腰直角三角形,

∴∠ACE=AEC=45°.(1)ABC≌△ADE,

∴∠ACB=AEC=45°,∴∠ACB=ACE,CA平分∠ECF.

過(guò)點(diǎn)AAGCD,垂足為點(diǎn)G.

AFCB,AF=AG.又∵AC=AE,

∴∠CAG=EAG=45°,

∴∠CAG=EAG=ACE=AEC,

CG=AG=GE,

CE=2AG=2AF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C,P是 上兩點(diǎn),AB=13,AC=5.
(1)如圖(1),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是 的中點(diǎn),求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)求值與計(jì)算
(1)先化簡(jiǎn),再求值:(1+ )÷ ,其中x= 1
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的兩根的倒數(shù)和為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①點(diǎn)(-ab,c)在第四象限;②a+b+c<0;>1;2a+b>0.其中正確的是_______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家超市以相同的價(jià)格出售同樣的商品,但為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)買商品超過(guò)400元后,超過(guò)部分按原價(jià)七折優(yōu)惠;在乙超市購(gòu)買商品只按原價(jià)的八折優(yōu)惠;設(shè)顧客累計(jì)購(gòu)物元(

(1)用含的代數(shù)式分別表示顧客在兩家超市購(gòu)買所付的費(fèi)用。

(2)當(dāng)時(shí),試比較顧客到哪家超市購(gòu)物更加優(yōu)惠。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形AOBC中,點(diǎn)A的坐標(biāo)是(-2,1),點(diǎn)C的縱坐標(biāo)是4,求B、C兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=120°,∠COD∠AOB內(nèi)部且∠COD=60°,下列說(shuō)法:

如果∠AOC=∠BOD,則圖中有兩對(duì)互補(bǔ)的角;

如果作OE平分∠BOC,則∠AOC=2∠DOE;

如果作OM平分∠AOC,且∠MON=90°,則ON平分∠BOD;

如果在AOB外部分別作AOC、BOD的余角AOP、BOQ,

其中正確的有(個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案