(本題14分)如圖,AB為⊙O的直徑,AC為⊙O的弦,AD平分∠BAC,交⊙O于點D,DEAC,交AC的延長線于點E

(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若AE=8,⊙O的半徑為5,求DE的長.

 

【答案】

(1)直線DE與⊙O相切

(2)

【解析】

試題分析:(1)連接OD,∵AD平分∠BAC,∴,∵,∴,∴,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,又∵點D在⊙O上,∴直線DE與⊙O相切

(2)

如圖1,作DF⊥AB,垂足為F,∴,∵,,∴△EAD≌△FAD,∴,,∵,∴,在Rt△DOF中,,∴

考點:切線的證明,弦心距和半徑、弦長的關(guān)系

點評:本題難度不大,第一小題通過內(nèi)錯角相等相等證明兩直線平行,再由兩直線平行推出同旁內(nèi)角相等。第二小題通過求出兩個三角形全等,從而推出對應邊相等,接著用弦心距和弦長、半徑的計算公式,求出半弦長。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本題14分)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點.

(1)求正比例函數(shù)和反比例函數(shù)的解析式;

(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點,求的值和這個一次函數(shù)的解析式;

(3)第(2)問中的一次函數(shù)的圖象與軸、軸分別交于C、D,求過AB、D三點的二次函數(shù)的解析式;

(4)在第(3)問的條件下,二次函數(shù)的圖象上是否存在點E,使的面積的面積S滿足:?若存在,求點E的坐標;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達端點時,另一個動點也隨之停止運動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆上海市黃浦區(qū)數(shù)學學業(yè)考試模擬試卷 題型:解答題

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點,
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點,且使△AHD為等腰三角形,請直接寫出AD的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年浙江省仙巖二中九年級數(shù)學模擬試題數(shù)學卷 題型:解答題

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達端點時,另一個動點也隨之停止運動.
(1)求AD的長;
(2)設(shè)CP=x, △PDQ的面積為y,求y關(guān)于x的函數(shù)表達式,并求自變量的取值范圍;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案