【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn) 軸負(fù)半軸上,頂點(diǎn)軸正半軸上,頂點(diǎn) 在第一象限,線段 , 的長(zhǎng)是一元二次方程 的兩根,

(1)直接寫(xiě)出點(diǎn)的坐標(biāo) 點(diǎn) C 的坐標(biāo) ;

(2)若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),求 的值;

(3)如圖過(guò)點(diǎn) 軸于點(diǎn) 軸上是否存在點(diǎn) ,使以,, 為頂點(diǎn)的三角形與以,,為頂點(diǎn)的三角形相似?若存在,直接寫(xiě)出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1),(2);(3)存在,

【解析】

(1)解一元二次方程x2-12x+36=0,求出兩根即可得到點(diǎn)A,C的坐標(biāo);

(2)過(guò)點(diǎn)BBEAC,垂足為E,由∠BAC=45°可知AE=BE,設(shè)BE=x,用勾股定理可得CE=,根據(jù)AE+CE=OA+OC,解方程求出BE,再由AE-OA=OE,即可求出點(diǎn)B的坐標(biāo),然后求出k的值;

(3)分類討論,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出點(diǎn)P的坐標(biāo).

(1)解一元二次方程 ,

解得:,

所以 ,

所以 ;

(2) 如圖,過(guò)點(diǎn) ,垂足為

,

設(shè)

=12,

EC=12-x,

RtΔBEC,,

整理得:,

解得:(不合題意舍去),

,

,

代入,得 ;

(3)存在.

如圖2,

若點(diǎn)POD上,若PDB∽△AOP,

,即

解得:OP=2OP=6,

P(0,2)或P(0,6);

如圖3,

若點(diǎn)POD上方,PDB∽△AOP,
,即,

解得:OP=12,

P(0,12);

如圖4,

若點(diǎn)POD上方,BDP∽△AOP,

,即,

解得:OP=4+2OP=4-2(不合題意舍去),

P(0,4+2);

如圖5,

若點(diǎn)Py軸負(fù)半軸,△PDB∽△AOP,

,即,

解得:OP=-4+2-4-2(不合題意舍去),

P點(diǎn)坐標(biāo)為(0,4-2

故點(diǎn) 的坐標(biāo)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:

abc>0;3a+c<0;a+b≥am2+bm;a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.

其中正確的有( 。﹤(gè).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=BC=2,將直角邊ACA點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC,連接BC′,EBC的中點(diǎn),連接CE,CE的最大值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:已知平行四邊形的面積為,所在直線上一點(diǎn).

如圖:當(dāng)點(diǎn)重合時(shí),________;

如圖,當(dāng)點(diǎn)均不重合時(shí),________;

如圖,當(dāng)點(diǎn)(或)的延長(zhǎng)線時(shí),________.

拓展推廣:如圖,平行四邊形的面積為,分別為、延長(zhǎng)線上兩點(diǎn),連接、、,求出圖中陰影部分的面積,并說(shuō)明理由.

實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,分別平行于、,它們相交于點(diǎn),,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC邊上的中線,AEBC,垂足為點(diǎn)E,交BDF,cosABC=,AB=13.

(1)求AE的長(zhǎng);

(2)求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)AAEBC,垂足為E,連接DE,F為線段DE上一點(diǎn),且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8AD=6,AF=4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解男生的體能情況,規(guī)定參加測(cè)試的每名男生從實(shí)心球立定跳遠(yuǎn),引體向上耐久跑1000四個(gè)項(xiàng)目中隨機(jī)抽取一項(xiàng)作為測(cè)試項(xiàng)目.

1)八年(1)班的25名男生積極參加,參加各項(xiàng)測(cè)試項(xiàng)目的統(tǒng)計(jì)結(jié)果如圖,參加實(shí)心球測(cè)試的男生人數(shù)是   人;

2)八年(1)班有8名男生參加了立定跳遠(yuǎn)的測(cè)試,他們的成績(jī)(單位:分)如下:95,100,82,90,8990,90,85

“95100,8290,8990,90,85”這組數(shù)據(jù)的眾數(shù)是   ,中位數(shù)是   

②小聰同學(xué)的成績(jī)是92分,他的成績(jī)?nèi)绾危?/span>

③如果將不低于90分的成績(jī)?cè)u(píng)為優(yōu)秀,請(qǐng)你估計(jì)八年級(jí)80名男生中立定跳遠(yuǎn)成績(jī)?yōu)閮?yōu)秀的學(xué)生約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形ABCD可以按圖示方式分成九部分,在a,b變化的過(guò)程中,下面說(shuō)法正確的有(

圖中存在三部分的周長(zhǎng)之和恰好等于長(zhǎng)方形ABCD的周長(zhǎng)

長(zhǎng)方形ABCD的長(zhǎng)寬之比可能為2

當(dāng)長(zhǎng)方形ABCD為正方形時(shí),九部分都為正方形

當(dāng)長(zhǎng)方形ABCD的周長(zhǎng)為60時(shí),它的面積可能為100

A.①②B.①③C.②③④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案