【題目】某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表.已知購進(jìn)60雙甲種運(yùn)動(dòng)鞋與50雙乙種運(yùn)動(dòng)鞋共用10000元

運(yùn)動(dòng)鞋價(jià)格

進(jìn)價(jià)(元/雙)

m

m﹣20

售價(jià)(元/雙)

240

160


(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))超過21000元,且不超過22000元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?

【答案】
(1)解:依題意得:60m+50(m﹣20)=10000,

解得m=100


(2)解:設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,則乙種運(yùn)動(dòng)鞋(200﹣x)雙,

根據(jù)題意得,

解不等式①得,x> ,

解不等式②得,x≤100,

所以,不等式組的解集是 <x≤100,

∵x是正整數(shù),100﹣84+1=17,

∴共有17種方案


(3)解:設(shè)總利潤(rùn)為W,則W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000( ≤x≤100),

①當(dāng)50<a<60時(shí),60﹣a>0,W隨x的增大而增大,

所以,當(dāng)x=100時(shí),W有最大值,

即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋100雙,購進(jìn)乙種運(yùn)動(dòng)鞋100雙;

②當(dāng)a=60時(shí),60﹣a=0,W=16000,(2)中所有方案獲利都一樣;

③當(dāng)60<a<70時(shí),60﹣a<0,W隨x的增大而減小,

所以,當(dāng)x=84時(shí),W有最大值,

即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋84雙,購進(jìn)乙種運(yùn)動(dòng)鞋116雙


【解析】(1)根據(jù)“購進(jìn)60雙甲種運(yùn)動(dòng)鞋與50雙乙種運(yùn)動(dòng)鞋共用10000元”列出方程并解答;(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200﹣x)雙,然后根據(jù)總利潤(rùn)列出一元一次不等式,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;(3)設(shè)總利潤(rùn)為W,根據(jù)總利潤(rùn)等于兩種鞋的利潤(rùn)之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
【考點(diǎn)精析】通過靈活運(yùn)用一元一次不等式組的應(yīng)用,掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是(
A.4
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個(gè)不同地方按不同銷售方案進(jìn)行銷售,以便開拓市場(chǎng). 若只在甲城市銷售,銷售價(jià)格為y(元/件)、月銷量為x(件),y是x的一次函數(shù),如表,

月銷量x(件)

1500

2000

銷售價(jià)格y(元/件)

185

180

成本為50元/件,無論銷售多少,每月還需支出廣告費(fèi)72500元,設(shè)月利潤(rùn)為W(元)
(利潤(rùn)=銷售額﹣成本﹣廣告費(fèi)).
若只在乙城市銷售,銷售價(jià)格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷量為x(件)時(shí),每月還需繳納 x2元的附加費(fèi),設(shè)月利潤(rùn)為W(元)(利潤(rùn)=銷售額﹣成本﹣附加費(fèi)).
(1)當(dāng)x=1000時(shí),y=元/件,w=元;
(2)分別求出W , W與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在甲城市銷售的月利潤(rùn)最大?若在乙城市銷售月利潤(rùn)的最大值與在甲城市銷售月利潤(rùn)的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請(qǐng)你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤(rùn)較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),△ABD的周長(zhǎng)為16cm,則△DOE的周長(zhǎng)是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2= (k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1>0時(shí),寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=a,AD=b,點(diǎn)M為BC邊上一動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B、C不重合),連接AM,過點(diǎn)M作MN⊥AM,垂足為M,MN交CD或CD的延長(zhǎng)線于點(diǎn)N.

(1)求證:△CMN∽△BAM;
(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當(dāng)x取何值時(shí),y有最大值,并求出y的最大值;
(3)當(dāng)點(diǎn)M在BC上運(yùn)動(dòng)時(shí),求使得下列兩個(gè)條件都成立的b的取值范圍:①點(diǎn)N始終在線段CD上,②點(diǎn)M在某一位置時(shí),點(diǎn)N恰好與點(diǎn)D重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案