【題目】如圖,在△ABC中,∠ACB=90°,CD平分∠ACB交AB于點D,將△CDB繞點C順時針旋轉(zhuǎn)到△CEF的位置,點F在AC上.
(1)△CDB旋轉(zhuǎn)的度數(shù);(2)連結(jié)DE,判斷DE與BC的位置關(guān)系,并說明理由.
【答案】(1)△CDB旋轉(zhuǎn)的度數(shù):90°;(2)DE∥BC,見解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)確定旋轉(zhuǎn)角的度數(shù);
(2)先利用旋轉(zhuǎn)的性質(zhì)得∠DCE=∠BCF=90°,CD=CE,則可判斷△CDE為等腰直角三角形,所以∠CDE=45°,再利用角平分線定義得到∠BCD=45°,則∠CDE=∠BCD,然后根據(jù)平行線的判定方法可判斷DE∥BC.
解:(1)∵將△CDB繞點C順時針旋轉(zhuǎn)到△CEF的位置,點F在AC上,
∴旋轉(zhuǎn)角為∠BCF,
即旋轉(zhuǎn)角為90°;
(2)DE∥BC.
理由如下:∵將△CDB繞點C順時針旋轉(zhuǎn)到△CEF的位置,點F在AC上,
∴∠DCE=∠BCF=90°,CD=CE,
∴△CDE為等腰直角三角形,
∴∠CDE=45°,
∵CD平分∠ACB交AB于點D,
∴∠BCD=45°,
∴∠CDE=∠BCD,
∴DE∥BC.
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、D在直線l的同側(cè).
(1)如圖1,在直線l上找一點C.使得線段AC+DC最小(請通過畫圖指出點C的位置);
(2)如圖2,在直線l上取兩點B、E,恰好能使△ABC和△DCE均為等邊三角形.M、N分別是線段AC、BC上的動點,連結(jié)DN交AC于點G,連結(jié)EM交CD于點F.
①當點M、N分別是AC、BC的中點時,判斷線段EM與DN的數(shù)量關(guān)系,并說明理由;
②如圖3,若點M、N分別從點A和B開始沿AC和BC以相同的速度向點C勻速運動,當M、N與點C重合時運動停止,判斷在運動過程中線段GF與直線1的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班數(shù)學課外活動小組的同學欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處測得樹頂端D的仰角為60°,已知A點的高度AB為2米,臺階AC的坡度i=1:2,且B,C,E三點在同一條直線上,請根據(jù)以上條件求出樹DE的高度.(測傾器的高度忽略不計,結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】東方專賣店專銷某種品牌的鋼筆,進價12元/支,售價20元/支.為了促銷,專賣店決定凡是買10支以上的,每多買一支,售價就降低0.10元(例如,某人買20支鋼筆,于是每只降價0.10×(20﹣10)=1元,就可以按19元/支的價格購買),但是最低價為16元/支.
(1)求顧客一次至少買多少支,才能以最低價購買?
(2)寫出當一次購買x支時(x>10),利潤y(元)與購買量x(支)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了46支,另一位顧客買了50支,專實店發(fā)現(xiàn)賣了50支反而比賣46支賺的錢少,為了使每次賣的多賺錢也多,在其他促銷條件不變的情況下,最低價16元/支至少要提高到多少,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD 是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA,OC,AC
(1)求∠OCA的度數(shù) (2)如果OEAC于F,且OC=, 求AC的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防“甲型H1N1”,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】火車勻速通過隧道時,火車在隧道內(nèi)的長度(米)與火車行駛時間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:
①火車的長度為120米;
②火車的速度為30米/秒;
③火車整體都在隧道內(nèi)的時間為25秒;
④隧道長度為750米.
其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com