【題目】如圖,在矩形中,點為對角線的中點,點是上一點,連接并延長交于點,連接、.
(1)求證:;
(2)當時,試判斷四邊形的形狀,并說明理由.
【答案】(1)證明見解析;(2)四邊形是菱形,理由見解析.
【解析】
(1)先根據(jù)矩形的性質(zhì)得出,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)線段中點的定義可得,最后根據(jù)三角形全等的判定定理即可得證;
(2)先根據(jù)三角形全等的性質(zhì)得出,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,然后根據(jù)平行線的性質(zhì)、角的和差可得,又根據(jù)等腰三角形的三線合一可得,從而根據(jù)菱形的判定可得平行四邊形是菱形,最后說明菱形不是正方形即可.
(1)四邊形ABCD是矩形
,
點O是對角線的中點
在和中,
;
(2)四邊形是菱形,理由如下:
由(1)已證:
又,即
四邊形是平行四邊形
,即OA是的角平分線
(等腰三角形的三線合一)
平行四邊形是菱形
點是上一點,
,即
菱形不是正方形
綜上,四邊形是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y = x2 – 2 m x – 2m – 2與直線y =-x-2 交于C,D兩點,將拋物線在C、D兩點之間的部分(不含C、D)上恰有兩個點的橫坐標為整數(shù),則m的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠ABC=60°,點E、F在對角線BD上運動,且EF=2,連接AE、AF,則△AEF周長的最小值是( )
A.4B.4+C.2+2D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于A(﹣1,0),B(4,0)兩點,與y軸交于點C.
(1)求a,b的值
(2)若點D是拋物線上的一點,且位于直線BC上方,連接CD,BD,AC.當四邊形ABDC的面積有最大值時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】攀枝花得天獨厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠銷北上廣等大城市.某水果店購進一批優(yōu)質(zhì)晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.
銷售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售價(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價為28元/千克.求當天該芒果的銷售量
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校為了了解圖書漂流的開展情況,隨機抽取部分學(xué)生進行了問卷調(diào)查,選項:閱讀漂流圖書本及以上;選項:閱讀漂流圖書本;選項:閱讀漂流圖書本;選項:沒有閱讀漂流圖書,只能從中選擇一個選項進行回答.收集整理問卷調(diào)查的情況,把結(jié)果繪制成如下不完整的統(tǒng)計圖:
(1)此次抽樣調(diào)查了_______名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖選項圓心角的度數(shù)是_______;
(4)該校有名學(xué)生,估計全校閱讀過漂流圖書的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,港口B位于港口O正西方向120 km處,小島C位于港口O北偏西60°的方向.一艘游船從港口O出發(fā),沿OA方向(北偏西30°)以v km/h的速度駛離港口O,同時一艘快艇從港口B出發(fā),沿北偏東30°的方向以60 km/h的速度駛向小島C,在小島C用1 h加裝補給物資后,立即按原來的速度給游船送去.
(1)快艇從港口B到小島C需要多長時間?
(2)若快艇從小島C到與游船相遇恰好用時1h,求v的值及相遇處與港口O的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)()的圖象如圖所示,對稱軸為直線,有下列結(jié)論:①;②;③.其中,正確結(jié)論的個數(shù)是( )
A.3個B.2個C.1個D.0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com