【題目】百貨商店服裝專柜在銷售中發(fā)現(xiàn):某商品的進(jìn)價為每件40元.當(dāng)售價為每件60元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.為占有市場份額,在確保盈利的前提下.
(1)降價多少元時,每星期盈利為6125元.
(2)降價多少元時,每星期盈利額最大,最大盈利額是多少?

【答案】
(1)解:設(shè)降價x元時,每星期盈利為6125元,

根據(jù)題意,得:(20﹣x)(300+20x)=6125,

解得:x=2.5,

答:降價2.5元時,每星期盈利為6125元


(2)解:設(shè)降價x元時,每星期的盈利為y元,

則y=(60﹣x)(300+20x)﹣40(300+20x)=﹣20x2+100x+6000.

因為降價要確保盈利,所以40<60﹣x≤60,

解得:0≤x<20,

∴當(dāng)x= =2.5時,y有最大值 =6125,

答:當(dāng)降價2.5元時,利潤最大且為6125元


【解析】(1)設(shè)降價x元時,每星期盈利為6125元,根據(jù):每件利潤×銷售量=總利潤,列方程求解可得;(2)根據(jù):利潤=單件利潤×售出的總件數(shù)列出函數(shù)表達(dá)式,根據(jù)x=﹣ 時,y有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計算B的表達(dá)式;

(2)求出2AB的結(jié)果;

(3)小強同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)﹣12+15﹣|﹣7﹣8|

(2)(﹣3)×(﹣9)﹣(﹣5)

(3)

(4)

化簡:(5)

(6)7a+3(a-3b)-2(b-3a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABD沿BD中點旋轉(zhuǎn)180°得到△BDC.現(xiàn)給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對稱圖形;
③四邊形ABCD是軸對稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計算B的表達(dá)式;

(2)求出2AB的結(jié)果;

(3)小強同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DFBC于點F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;
(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請在坐標(biāo)系中作出旋轉(zhuǎn)中心S并寫出旋轉(zhuǎn)中心S的坐標(biāo):S
(4)在x軸上有一點P,使得PA+PB的值最小,請作圖標(biāo)出P點并寫出點P的坐標(biāo).P

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為(

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2米時,水面寬4米.若水面下降1米,則水面寬度將增加多少米?

查看答案和解析>>

同步練習(xí)冊答案