精英家教網 > 初中數學 > 題目詳情

【題目】閱讀下列材料:

在學習可化為一元一次方程的分式方程及其解法的過程中,老師提出一個問題:若關于x的分式方程=1的解為正數,求a的取值范圍.

經過獨立思考與分析后,小杰和小哲開始交流解題思路如下:

小杰說:解這個關于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.

小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.

(1)請回答:   的說法是正確的,并簡述正確的理由是   ;

(2)參考對上述問題的討論,解決下面的問題:

若關于x的方程的解為非負數,求m的取值范圍.

【答案】(1)小哲;分式的分母不為0;(2)m≥﹣6m≠﹣3.

【解析】

(1)根據分式方程解為正數,且分母不為0判斷即可;
(2)分式方程去分母轉化為整式方程,由分式方程的解為非負數確定出m的范圍即可.

解:(1)小哲的說法是正確的,正確的理由是分式的分母不為0;

故答案為:小哲;分式的分母不為0;

(2)去分母得:m+x=2x﹣6,

解得:x=m+6,

由分式方程的解為非負數,得到m+6≥0,且m+6≠3,

解得:m≥﹣6m≠﹣3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知,如圖,在R t△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.

(1)動手操作:利用尺規(guī)作,以AB邊上一點O為圓心,過A,D兩點作⊙O,與AB的另一個交點為E,與AC的另一個交點為F(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由。
(2)若∠BAC=60度,CD= ,求線段BD、BE與劣弧DE所圍成的圖形面積.(結果保留根號和

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)光線從空氣中射入水中會產生折射現象,同時光線從水中射入空氣中也會產生折射現象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據光學知識有∠1=∠2,∠3=∠4,請判斷光線a與光線b是否平行,并說明理由;

2)如圖2,直線EF上有兩點A、C,分別引兩條射線AB、CD.已知∠BAF150°,∠DCF80°,射線AB、CD分別繞點A、點C1/秒和3/秒的速度同時順時針轉動,設時間為t秒,當射線CD轉動一周時,兩條射線同時停止.則當直線CD與直線AB互相垂直時,t   秒.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片 ABCD 折疊,AE、EF 為折痕,點 C 落在 AD 邊上的 G 處, 并且點 B 落在 EG 邊的 H AB=,BAE=30°,則 BC 邊的長為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.

(1)畫出△ABC關于直線MN對稱的△A1B1C1;

(2)直接寫出AA1的長度;

(3)如圖2,A、C是直線MN同側固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最小.(保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā), 勻速運動. 快車離乙地的路程y1(km) 與行駛的時間x(h) 之間的函數關系, 如圖中線段AB 所示;慢車離乙地的路程y2(km) 與行駛的時間x(h)之間的函數關系, 如圖中線段OC 所示。根據圖象下列問題:

(1) 甲、乙兩地之間的距離為__________km ;

(2) 線段AB 的解析式為_______________________;線段OC 的解析式為_________________________;

(3) 設快、慢車之間的距離為y(km), 求y 與慢車行駛時間x(h) 的函數關系式, 并畫出函數的圖象。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CE是⊙O的直徑,D為⊙O上一點,過點D作⊙O的切線,交CE延長線于點A,連接DE,過點O作OB∥ED,交AD的延長線于點B,連接BC.

(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AC⊥BC,AD⊥BD,E為AB的中點,

(1)如圖1,求證:ECD是等腰三角形;

(2)如圖2,CD與AB交點為F,若AD=BD,EF=3,DE=4,求CD的長.

查看答案和解析>>

同步練習冊答案