【題目】如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),∠A=50°,∠ADE=60°,則∠C的度數(shù)為(

A.50°
B.60°
C.70°
D.80°

【答案】C
【解析】解:由題意得,∠AED=180°﹣∠A﹣∠ADE=70°,
∵點(diǎn)D,E分別是AB,AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,
∴∠C=∠AED=70°.
故選C.
【考點(diǎn)精析】通過靈活運(yùn)用平行線的性質(zhì)和三角形的內(nèi)角和外角,掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC∽△DEF,面積比為94,則△ABC與△DEF的對應(yīng)邊之比為( )

A. 34B. 32C. 916D. 23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABCD中,E是AD邊的中點(diǎn),連接BE.
(1)如圖①,若BC=2,則AE的長=;
(2)如圖②,延長BE交CD的延長線于點(diǎn)F,求證:FD=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,4),B(﹣3,0).

(1)只用直尺(沒有刻度)和圓規(guī)按下列要求作圖.

(要求:保留作圖痕跡,不必寫出作法)

Ⅰ)ACy軸,垂足為C;

Ⅱ)連結(jié)AO,AB,設(shè)邊AB,CO交點(diǎn)E.

(2)在(1)作出圖形后,直接判斷AOE與BOE的面積大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),∠A=50°,∠ADE=60°,則∠C的度數(shù)為(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=﹣1是一元二次方程ax2+bx﹣2=0的一個(gè)根,那么b﹣a的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,CB=8,點(diǎn)P與點(diǎn)Q分別是AB、CB邊上的動(dòng)點(diǎn),點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)A→點(diǎn)B運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長度的速度從點(diǎn)C→點(diǎn)B運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).(設(shè)運(yùn)動(dòng)時(shí)間為t秒)
(1)如果存在某一時(shí)刻恰好使QB=2PB,求出此時(shí)t的值;
(2)在(1)的條件下,求圖中陰影部分的面積(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一客輪往返于重慶和武漢之間,第一次做往返航行時(shí),長江的水流速度為a千米/小時(shí);第二次做往返航行時(shí),正遇上長江發(fā)大水,水流速度為b千米/小時(shí)(b>a).已知該船在兩次航行中,靜水速度都為V千米/小時(shí),問該船兩次往返航行所花時(shí)間是否相等,若你認(rèn)為相等,請說明理由;若你認(rèn)為不相等,請分別表示出兩次航行所花的時(shí)間,并指出哪次時(shí)間更短些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)所學(xué)的知識完成小題:
(1)已知代數(shù)式:4x﹣4xy+y2﹣x2y3
①將代數(shù)式按照y的次數(shù)降冪排列.
②當(dāng)x=2,y=﹣1時(shí),求該代數(shù)式的值
(2)已知:關(guān)于xyz的代數(shù)式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5為五次二項(xiàng)式,求|m﹣n|的值.

查看答案和解析>>

同步練習(xí)冊答案