【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長(zhǎng);
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
【答案】
(1)解:BQ=2×2=4cm,
BP=AB﹣AP=8﹣2×1=6cm,
∵∠B=90°,
PQ= = = =2
(2)解:BQ=2t,
BP=8﹣t
2t=8﹣t,
解得:t=
(3)解:①當(dāng)CQ=BQ時(shí)(圖1),則∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②當(dāng)CQ=BC時(shí)(如圖2),則BC+CQ=12
∴t=12÷2=6秒.
③當(dāng)BC=BQ時(shí)(如圖3),過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,
則BE= = ,
所以CE= ,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,當(dāng)t為5.5秒或6秒或6.6秒時(shí),
△BCQ為等腰三角形.
【解析】(1)根據(jù)點(diǎn)P、Q的運(yùn)動(dòng)速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)設(shè)出發(fā)t秒鐘后,△PQB能形成等腰三角形,則BP=BQ,由BQ=2t,BP=8﹣t,列式求得t即可;(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間有三種情況:①當(dāng)CQ=BQ時(shí)(圖1),則∠C=∠CBQ,可證明∠A=∠ABQ,則BQ=AQ,則CQ=AQ,從而求得t;②當(dāng)CQ=BC時(shí)(如圖2),則BC+CQ=12,易求得t;③當(dāng)BC=BQ時(shí)(如圖3),過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,則求出BE,CE,即可得出t.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種運(yùn)動(dòng)鞋每雙按成本價(jià)提高25%后標(biāo)價(jià),后因處理庫(kù)存每雙按標(biāo)價(jià)的9折出售,若毎雙鞋的出售價(jià)是90元,則每雙鞋的成本價(jià)是元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A. x2+x2=x4B. 2x3﹣x3=x3C. x2x3=x6D. (x2)3=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①矩形、②菱形、③正方形、④平行四邊形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有 ________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜按品質(zhì)分成三個(gè)等級(jí)銷售,銷售情況如表:
等級(jí) | 單價(jià)(元/千克) | 銷售量(千克) |
一等 | 5.0 | 20 |
二等 | 4.5 | 40 |
三等 | 4.0 | 40 |
則售出蔬菜的平均單價(jià)為元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)數(shù)|﹣3|,﹣2,0,1中最小的數(shù)是( 。
A. |﹣3|B. 1C. 0D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1.
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com