【題目】某中學為了美化校園環(huán)境,計劃購進桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調(diào)查了解到:若購進15棵桂花樹和6棵黃桷樹共需600元,若購進12棵桂花樹和5棵黃桷樹共需490元.

(1)求購進的桂花樹和黃桷樹的單價各是多少元?

(2)已知甲、乙兩個苗圃的兩種樹苗銷售價格和上述價格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個苗圃中購買樹苗所需總費用,求出y1和y2關于x的函數(shù)表達式;

(3)現(xiàn)在,學校根據(jù)實際需要購買的黃桷樹的棵數(shù)不少于35棵且不超過40棵,請設計一種購買方案,使購買的樹苗所花費的總費用最少.最少費用是多少?

【答案】(1)購進的桂花樹為20元/棵,黃桷樹為50元/棵;(2)y1=﹣4x+3600,y2=21x+2800;(3)到甲苗圃購買40棵黃桷樹,160棵桂花樹時,費用最小,最少費用為3440元.

【解析】

(1)設購進的桂花樹為x/棵,黃桷樹為y/棵,由題意可列方程組,可求得答案;

(2)利用題目中所給的方案,分別表示y1、y2即可;

(3)令y1=y2,可求得x=32,利用一次函數(shù)的增減性,進行判斷即可.

(1)設購進的桂花樹為x元/棵,黃桷樹為y元/棵,

由題意,解得,

答:購進的桂花樹為20元/棵,黃桷樹為50元/棵;

(2)由題意可得y1=50x+(200﹣x﹣2x)×20×90%,即y1=﹣4x+3600,

y2=[50x+(200﹣x)×20]×70%,即y2=21x+2800;

(2)∵當y1=y2時,即﹣4x+3600=21x+2800,解得x=32,

當x=32時,y1=y2,即當x=32時,到兩家苗圃購買費用一樣,

∵y1隨x的增大而減小,y2可隨x的增大而增大,

選擇到甲苗圃購買,

∵35≤x≤40,

當x=40時,費用最少為:y=﹣4×40+3600=3440元,

即到甲苗圃購買40棵黃桷樹,160棵桂花樹時,費用最小,最少費用為3440元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,BD為對角線.

(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);

(2)在(1)的條件下,若AB=4,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EBC邊上,點FDC的延長線上,且∠DAE=F

1)求證:△ABE∽△ECF

2)若AB=5,AD=8,BE=2,求FC的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、的平分線交于.

1是什么角?(直接寫結(jié)果)

2)如圖2,過點的直線交射線于點,交射線于點,觀察線段,你有何發(fā)現(xiàn)?并說明理由.

3)如圖2,過點的直線交射線于點,交射線于點,求證:;

4)如圖3,過點的直線交射線的反向延長線于點,交射線于點,,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。

①B地在C地的北偏西50°方向上;

②A地在B地的北偏西30°方向上;

③cos∠BAC=;

④∠ACB=50°.其中錯誤的是(  )

A. ①② B. ②④ C. ①③ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個,錯誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=120°,C=80°.將△BMN沿著MN翻折,得到△FMN.若MFAD,F(xiàn)NDC,則∠F的度數(shù)為( 。

A. 70° B. 80° C. 90° D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x﹣5x軸交于A,B兩點(電B在點A的右側(cè)),與y軸交于點C,拋物線的對稱軸與x軸交于點D.

(1)A,B,C三點的坐標及拋物線的對稱軸.

(2)如圖1,點E(m,n)為拋物線上一點,且2<m<5,過點EEFx軸,交拋物線的對稱軸于點F,作EHx軸于點H,求四邊形EHDF周長的最大值.

(3)如圖2,點P為拋物線對稱軸上一點,是否存在點P,使以點P,B,C為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案