【題目】如圖,第一象限內的點A在反比例函數(shù)y=上,第二象限的點B在反比例函數(shù)y=上,且OA⊥OB,,BC、AD垂直于x軸于C、D,則k的值為_____.
【答案】﹣
【解析】
利用反比例函數(shù)系數(shù)的幾何意義得到S△AOD=2,接著證明Rt△AOD∽Rt△OBC,利用相似三角形的性質得S△OBC=S△AOD=,所以|k|=,然后根據(jù)反比例函數(shù)的性質確定k的值.
解:如圖,∵第一象限內的點A在反比例函數(shù)y=上,BC、AD垂直于x軸于C、D,
∴S△AOD=×4=2,
∵OA⊥OB,
∴∠AOD+∠BOC=90°,
∴∠AOD+∠OAD=90°,
∴∠BOC=∠OAD,
∵∠BCO=∠ODA=90°,
∴Rt△AOD∽Rt△OBC,
∵,
∴
∴S△OBC=S△AOD=×2=,
∴|k|=,
而k<0,
∴k=﹣.
故答案為﹣.
科目:初中數(shù)學 來源: 題型:
【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個黑球和2個紅球,這些球除顏色外都相同.顧客每次摸出一個球,若摸到黑球,則獲得1份獎品;若摸到紅球,則沒有獎品.
(1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為 ;
(2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標分別為﹣3、1,與y軸交于點C,下面四個結論:
①16a+4b+c>0:
②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1<y2;
③c=3a;
④若△ABC是等腰三角形,則b=﹣或﹣.
其中正確的有_____.(請將正確結論的序號全部填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中∠BAC=60°,以點A為圓心,以任意長為半徑作弧分別交AB,AC于點M,N兩點,再分別以點M,N為圓心,以大于MN的長為半徑作弧交于點P,作射線AP交BC于點E,若BE=2cm,則CE的長為( )
A.6cmB.6cmC.4cmD.4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y(k為常數(shù),k≠0)的圖象交于二、四象限內的A、B兩點,與y軸交于C點.點A的坐標為(m,5),點B的坐標為(5,n),tan∠AOC.
(1)求k的值;
(2)直接寫出點B的坐標,并求直線AB的解析式;
(3)P是y軸上一點,且S△PBC=2S△AOB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅要外出參加一項慶;顒,需網購一個拉桿箱,圖1,圖2分別是她上網時看到的某種型號拉桿箱的實物圖與示意圖,并獲得了如下信息:滑桿DE,箱長BC,拉桿AB的長度都相等,B,F在AC上,C在DE上,支桿DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,求AC的長度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在邊長為l的正方形網格中如圖所示.
①以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點C的異側,并表示出A1的坐標.
②作出△ABC繞點C順時針旋轉90°后的圖形△A2B2C.
③在②的條件下求出點B經過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,小球從左側的斜坡滾下,到達底端后又沿著右側斜坡向上滾,在這個過程中,小球的運動速度v(單位:m/s)與運動時間t (單位:s)的函數(shù)圖象如圖2,則該小球的運動路程y(單位:m)與運動時間t(單位:s)之間的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AB為直徑,BC=CD,過點C作CE⊥AB于點E,CH⊥AD交AD的延長線于點H,連接BD交CE于點G.
(1)求證:CH是⊙O的切線;
(2)若點D為AH的中點,求證:AD=BE;
(3)若sin∠DBA=,CG=5,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com