【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD⊥AB,垂足為E,且=PEPO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)3.
【解析】
試題分析:(1)連結(jié)OC,如圖,由=PEPO和公共角可判斷△PCE∽△POC,則∠PEC=∠PCO=90°,然后根據(jù)切線的判定定理可判斷PC是⊙O的切線;
(2)設(shè)OE=x,則EA=2x,OA=OC=3x,證明△OCE∽△OPC,利用相似比可表示出OP,則可列方程3x+6=9x,然后解出x即可得到⊙O的半徑.
試題解析:(1)證明:連結(jié)OC,如圖,∵CD⊥AB,∴∠PEC=90°,∵=PEPO,∴PC:PO=PE:PC,而∠CPE=∠OPC,∴△PCE∽△POC,∴∠PEC=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切線;
(2)解:設(shè)OE=x,則EA=2x,OA=OC=3x,∵∠COE=∠POC,∠OEC=∠OCP,∴△OCE∽△OPC,∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,∴3x+6=9x,解得x=1,∴OC=3,即⊙O的半徑為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合)。若四邊形OBCD是平行四邊形時(shí),那么的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)如圖①,等邊△ABC中,點(diǎn)D是AB邊上的一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),以CD為一邊,向上作等邊△EDC,連接AE.你能發(fā)現(xiàn)線段AE、AD與AC之間的數(shù)量關(guān)系嗎?證明你發(fā)現(xiàn)的結(jié)論.
(2)類(lèi)比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線上時(shí),其他作法與(1)相同,猜想線段AE、AD與AC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到點(diǎn)P處再測(cè)得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡角為(tan∠PAB=)且OAB在同一條直線上,求電視塔OC的高度以及此人所在位置的P的垂直高度。(測(cè)傾器的高度不計(jì),結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程組甲由于看錯(cuò)了方程(1)中的a,得到方程組的解為 , 乙由于看錯(cuò)了方程(2)中的b,得到方程組的解為 , 若按正確的計(jì)算,求x+6y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(n,m)在第一象限,AB⊥x軸于B,AC⊥y軸于C,(m﹣3)2+n2﹣6n+9=0,過(guò)C點(diǎn)作∠ECF分別交線段AB、OB于E、F兩點(diǎn).
(1)求m、n的值并寫(xiě)出A、B、C三點(diǎn)的坐標(biāo);
(2)若OF+BE=AB,求證:CF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,寫(xiě)出△ABC各頂點(diǎn)的坐標(biāo)以及△ABC關(guān)于x對(duì)稱(chēng)的△A1B1C1的各頂點(diǎn)坐標(biāo),并畫(huà)出△ABC關(guān)于y對(duì)稱(chēng)的△A2B2C2.并求△ABC的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com