【題目】如圖,在正方形中,點(diǎn)邊上的一動(dòng)點(diǎn),點(diǎn)上一點(diǎn),且,、相交于點(diǎn).

1)求證:;

2)求的度數(shù)

3)若,求的值.

【答案】1)見(jiàn)解析;(2)∠AGD90°;(3.

【解析】

1)直接利用正方形的性質(zhì)得到ADDC,∠ADF=∠DCE,,結(jié)合全等三角形的判定方法得出答案;

2)根據(jù)∠DAF=∠CDE和余角的性質(zhì)可得∠AGD90°;

3)利用全等三角形的判定和性質(zhì)得出ABH≌△ADGAAS),即可得出的值.

1)證明:∵四邊形ABCD是正方形,

ADDC,∠ADF=∠DCE90°,

ADFDCE

;

∴△ADF≌△DCESAS);

2)解:由(1)得ADF≌△DCE,

∴∠DAF=∠CDE,

∵∠ADG+CDE90°

∴∠ADG+DAF90°,

∴∠AGD90°

3)過(guò)點(diǎn)BBHAGH

BHAG,

∴∠BHA90°,

∴∠BHA=∠AGD

∵四邊形ABCD是正方形,

ABADBC,∠BAD90°,

∵∠ABH+BAH90°,∠DAG+BAH90°,

∴∠ABH=∠DAG,

ABHADG

,

∴△ABH≌△ADGAAS),

AHDG

BGBC,BABC,

BABG,

AHAG,

DGAG,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查

已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:(A組x<155B組155x<160;C組160x<165;D組165x<170;E組x170

根據(jù)圖表提供的信息回答下列問(wèn)題

1樣本中,男生的身高眾數(shù)在 ,中位數(shù)在

2樣本中,女生的身高在E組的人數(shù)有

3已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在160x<170之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線過(guò)點(diǎn),直線與直線交于點(diǎn)B,與x軸交于點(diǎn)C

1)求k的值;

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)b=4時(shí),直接寫出OBC內(nèi)的整點(diǎn)個(gè)數(shù);

②若OBC內(nèi)的整點(diǎn)個(gè)數(shù)恰有4個(gè),結(jié)合圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足

1 , ;

2)若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù) 表示的點(diǎn)重合;

3)點(diǎn)、、開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過(guò)后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,求、、的長(zhǎng)(用含的式子表示);

4)在(3)的條件下,的值是否隨著時(shí)間的變化而改變?若改變,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是反比例函數(shù)y=(k0)圖象在第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)Px軸的垂線,垂足為M,若△POM的面積為2.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)B坐標(biāo)為(0,﹣2),點(diǎn)A為直線y=x與反比例函數(shù)y=(k0)圖象在第一象限上的交點(diǎn),連接AB,過(guò)AACy軸于點(diǎn)C,若△ABC與△POM相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某淘寶商家計(jì)劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實(shí)際每天的銷售量與計(jì)劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):

星期

與計(jì)劃量的差值

+4

-3

-5

+14

-8

+21

-6

1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。

2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。

3)該店實(shí)行每日計(jì)件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過(guò)部分每輛另獎(jiǎng)15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:數(shù)學(xué)課上,老師給出了如下問(wèn)題:如圖甲,AOB=70°,OC平分AOB

BOD=20°,請(qǐng)你補(bǔ)全圖形,并求COD的度數(shù).

以下是小明的解答過(guò)程:

解:如圖乙,因?yàn)?/span>OC平分AOB,AOB=70°,

所以BOC=____AOB=________°

因?yàn)?/span>BOD=20°

所以COD= °

小靜說(shuō):我覺(jué)得這個(gè)題有兩種情況,小明考慮的是ODAOB外部的情況,事實(shí)上,OD還可能在AOB的內(nèi)部

完成以下問(wèn)題:

1)請(qǐng)你將小明的解答過(guò)程補(bǔ)充完整;

2)根據(jù)小靜的想法,請(qǐng)你在圖甲中畫出另一種情況對(duì)應(yīng)的圖形,求出此時(shí)∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四點(diǎn)A、BC、D

1)用圓規(guī)和無(wú)刻度的直尺按下列要求與步驟畫出圖形:

①畫直線AB

②畫射線DC

③延長(zhǎng)線段DA至點(diǎn)E,使(保留作圖痕跡)

④畫一點(diǎn)P,使點(diǎn)P既在直線AB上,又在線段CE上.

2)在(1)中所畫圖形中,若cm,cm,點(diǎn)F為線段DE的中點(diǎn),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年5月,我國(guó)南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬(wàn)人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.

(1)請(qǐng)?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(jì)(噸)

C

   

   

240

D

   

x

260

總計(jì)(噸)

200

300

500

(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過(guò)搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案