【題目】如圖,直線(xiàn)y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過(guò)點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線(xiàn)CD上的一點(diǎn),且△OCP與△OBC相似,求過(guò)點(diǎn)P的雙曲線(xiàn)解析式.
【答案】解:∵直線(xiàn)y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),
∴令y=0,可得﹣2x+4=0,解得x=2,即C(2,0),OC=2,
令x=0,可得y=4,即B(0,4),OB=4,
①如圖1,當(dāng)∠OBC=∠COP時(shí),△OCP∽△BOC,
∴=,即=,解得CP=1,
∴P(2,﹣1),
設(shè)過(guò)點(diǎn)P的雙曲線(xiàn)解析式y(tǒng)=,把P點(diǎn)代入解得k=﹣2,
∴過(guò)點(diǎn)P的雙曲線(xiàn)解析式y(tǒng)=﹣,
②如圖2,當(dāng)∠OBC=∠CPO時(shí),△OCP∽△COB,
在△OCP和△COB中,
∴△OCP≌△COB(AAS)
∴CP=BO=4,
∴P(2,﹣4)
設(shè)過(guò)點(diǎn)P的雙曲線(xiàn)解析式y(tǒng)=,把P點(diǎn)代入得﹣4=,解得k=﹣8,
∴過(guò)點(diǎn)P的雙曲線(xiàn)解析式y(tǒng)=.
綜上可得,過(guò)點(diǎn)P的雙曲線(xiàn)的解析式為y=﹣或y=.
【解析】由直線(xiàn)y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),易得OC=2,OB=4,再分兩種情況①當(dāng)∠OBC=∠COP時(shí),△OCP與△OBC相似,②當(dāng)∠OBC=∠CPO時(shí),△OCP與△OBC相似分別求出點(diǎn)的坐標(biāo),再求出過(guò)點(diǎn)P的雙曲線(xiàn)解析式.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識(shí),掌握相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是一片水田,某村民小組需計(jì)算其面積,測(cè)得如下數(shù)據(jù):
∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.
請(qǐng)你計(jì)算出這片水田的面積.
(參考數(shù)據(jù):sin54°≈0.809,cos54°≈0.588,tan54°≈1.376, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市2016年四月每日的最低氣溫(℃)的統(tǒng)計(jì)圖,則在四月份每日的最低氣溫這組數(shù)據(jù)中,中位數(shù)和眾數(shù)分別是( )
A.14℃,14℃
B.15℃,15℃
C.14℃,15℃
D.15℃,14℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架云梯AB的長(zhǎng)25 m,斜靠在一面墻上,梯子靠墻的一端A距地面距離AC為24 m.
(1)這個(gè)梯子底端B離墻的距離BC有多少米?
(2)如果梯子的頂端下滑了4 m,那么梯子的底部在水平方向也滑動(dòng)了4 m嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定兩數(shù)a、b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.
例如:因?yàn)?/span>,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:,他給出了如下的證明:
設(shè),則,即
∴,即,
∴.
請(qǐng)你嘗試運(yùn)用上述這種方法說(shuō)明下面這個(gè)等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=13,AC=5,BC邊上的中線(xiàn)AD=6,點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,且AD=DE.
(1)試判斷△ABE的形狀并說(shuō)明理由;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長(zhǎng)為( )
A.12
B.15
C.12
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G.且AB∥CD.BO=6cm,CO=8cm.
(1)求證:BO⊥CO;
(2)求BE和CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請(qǐng)補(bǔ)全證明過(guò)程,并在括號(hào)里寫(xiě)上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com