【題目】 如圖所示,已知二次函數(shù)yax2+bx+c的圖象與x軸交于AB兩點,與y軸交于點C,對稱軸為直線x1.直線y=﹣x+c與拋物線yax2+bx+c交于CD兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論:ab+c0②2a+b+c0;xαx+b)≤a+b;a>﹣1.其中正確的有( 。

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)得出對稱軸為x1則得出點(3,y)關于直線x1對稱的點為(﹣1,y)然后即可得出①正確,令y0代入y=﹣x+c得出c,再根據(jù)函數(shù)圖象知道1c2結(jié)合對稱軸得出②正確,根據(jù)函數(shù)圖象判斷③即可,聯(lián)立拋物線與一次函數(shù)的方程然后化簡判斷④的對錯.

解:由圖象可知:拋物線的對稱軸為x1時,

∴點(3,y)關于直線x1對稱的點為(﹣1,y),

x3時,y0,

x=﹣1,y0

ab+c0,故正確;

y0代入y=﹣x+c,

xc,

由圖象可知:1c2

由圖象可知:1,

2a+b0

2a+b+cc0,故正確;

由圖象可知:x1時,y的最大值為a+b+c,

∴當x取全體實數(shù)時,ax2+bx+ca+b+c,

xax+b)≤a+b,故正確;

聯(lián)立,

化簡得:ax2+b+1x0,

x0x

D的橫坐標為,

由于b=﹣2a,a0,且3,

∴﹣b13a,

a<﹣1,故錯誤,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在方格紙中,設單元正方形邊長為1

1)已知△ABC的頂點都在格點上,請直接寫出△ABC的面積S   ;

2)請以點O為位似中心,相似比為2,在方格紙中將△ABC放大,畫出放大后的圖形△AB'C'

3)求△AB'C的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,切點分別相為點DE、F,設ABC的面積、周長分別為S、l,⊙O的半徑為r,則下列等式:

①∠AED+∠BFE+∠CDF180°;②S=l r;③2EDF=∠A+∠C;④2(ADCFBE)l,其中成立的是( )

A.①②③④B.②③④C.①③④D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系h20t5t2.下列敘述正確的是(  )

A. 小球的飛行高度不能達到15m

B. 小球的飛行高度可以達到25m

C. 小球從飛出到落地要用時4s

D. 小球飛出1s時的飛行高度為10m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線的頂點坐標是,并且拋物線與軸兩交點間的距離為8,試求該拋物線的關系式,并求出這條拋物線上縱坐標為10的點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 某網(wǎng)店銷售一種產(chǎn)品.這種產(chǎn)品的成本價為10/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/件市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系如圖所示:

1)當12x18時,求yx之間的函數(shù)關系式;

2)求每天的銷售利潤w(元)與銷售價x(元/件)之間的函數(shù)關系式并求出每件銷售價為多少元時.每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究函數(shù)的圖象與性質(zhì).

(1)下表是yx的幾組對應值.

其中m的值為_______________;

(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并已畫出了函數(shù)圖象的一部分,請你畫出該圖象的另一部分;

(3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):_____________________________;

(4)若關于x的方程2個實數(shù)根,則t的取值范圍是___________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學在一次用頻率估計概率的試驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,給出的 統(tǒng)計圖如圖所示,則符合這一結(jié)果的試驗可能是

A.擲一枚硬幣,出現(xiàn)正面朝上的概率

B.擲一枚硬幣,出現(xiàn)反面朝上的概率

C.擲一枚骰子,出現(xiàn) 點的概率

D.從只有顏色不同的兩個紅球和一個黃球中,隨機取出一個球是黃球的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行乒乓球單打比賽,要從中選出兩位同學打第一場比賽.

(1) 若確定甲打第一場,再從其余三位同學中隨機選取一位,恰好選中乙同學的概率是

(2) 若隨機抽取兩位同學,請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

同步練習冊答案