【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù),下面給出了求∠AGD的度數(shù)的過程,將此補充完整并在括號里填寫依據(jù).
【解】∵EF∥AD(已知)
∴∠2=
又∵∠1=∠2(已知)
∴∠1=∠3(等式性質(zhì)或等量代換)
∴AB∥
∴∠BAC+=180°(
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性質(zhì))

【答案】∠3;兩直線平行,同位角相等;DG;內(nèi)錯角相等,兩直線平行;∠AGD;兩直線平行,同旁內(nèi)角互補
【解析】解:∵EF∥AD(已知)

∴∠2=∠3(兩直線平行,同位角相等)

又∵∠1=∠2(已知)

∴∠1=∠3(等式性質(zhì)或等量代換)

∴AB∥DG(內(nèi)錯角相等,兩直線平行)

∴∠BAC+∠AGD=180°(兩直線平行,同旁內(nèi)角互補)

又∵∠BAC=70°(已知)

∴∠AGD=110°(等式性質(zhì))

所以答案是:∠3,兩直線平行,同位角相等;DG,內(nèi)錯角相等,兩直線平行;∠AGD,兩直線平行,同旁內(nèi)角互補.

【考點精析】關(guān)于本題考查的平行線的判定與性質(zhì),需要了解由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一塊等腰直角三角形鐵板,通過切割焊接成一個含有45°角的平行四邊形,設(shè)計一種簡要的方案并給出正確的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點C到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時段,隨機調(diào)查了部分入園游客,統(tǒng)計了他們進園前等候檢票的時間,并繪制成如下圖表.表中“10~20”表示等候檢票的時間大于或等于10min而小于20min,其它類同.

(1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是;
(2)表中a= , b= , 并請補全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計圖,則“40~50”的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在平面直角坐標系中的位置如圖所示.

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出△A1B1C1各頂點坐標;
(2)將△ABC向左平移1個單位,作出平移后的△A2B2C2 , 并寫出△A2B2C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90度.

(1)請你數(shù)一數(shù),圖中有多少個角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列多項式相乘的結(jié)果是a2﹣a﹣6的是( 。
A.(a﹣2)(a+3)
B.(a+2)(a﹣3)
C.(a﹣6)(a+1)
D.(a+6)(a﹣1)

查看答案和解析>>

同步練習冊答案