精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式及對(duì)稱軸;
(2)點(diǎn)C′是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),證明直線y=-
4
3
(x+1)
必經(jīng)過點(diǎn)C′.
分析:(1)已知了拋物線上A,B,C三點(diǎn)的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式.進(jìn)而可根據(jù)二次函數(shù)的解析式得出拋物線的對(duì)稱軸.
(2)可根據(jù)(1)的拋物線對(duì)稱軸的解析式,求出C′的坐標(biāo),將C′的坐標(biāo)代入直線的解析式中即可判斷出C′是否在直線y=-
4
3
(x+1)上.
解答:解:(1)設(shè)拋物線的解析式為y=a(x-4)(x+1).
已知拋物線過C(
11
5
,-
12
5
),
則有:a(
11
5
-4)(
11
5
+1)=-
12
5

解得a=
5
12

∴拋物線的解析式為y=
5
12
x2-
5
4
x-
5
3

其對(duì)稱軸為:x=
3
2


(2)由題意可知:C′(
4
5
,-
12
5
).
當(dāng)x=
4
5
時(shí),y=-
4
3
(x+1)=-
4
3
4
5
+1)=-
12
5

因此直線y=-
4
3
(x+1)必過C′.
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,
52
).
(1)求拋物線的解析式;
(2)若D是拋物線的頂點(diǎn),E是拋物線的對(duì)稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對(duì)稱,求證:∠CFE=∠AFE;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有請(qǐng)求出所有符和條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(-1,0)、B(3,0)、C(0,-3).
(1)求該拋物線的解析式及其頂點(diǎn)的坐標(biāo);
(2)若P是拋物線上C、B兩點(diǎn)之間的一動(dòng)點(diǎn),請(qǐng)連接CP、BP,是否存在點(diǎn)P,使得四邊形OBPC的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(6,0),直線AB交拋物線的對(duì)稱軸于點(diǎn)F,直線AC交拋物線對(duì)稱軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)求證:點(diǎn)E與點(diǎn)F關(guān)于頂點(diǎn)D對(duì)稱;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有,請(qǐng)求出所有合條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)南市天橋區(qū)九年級(jí)中考三模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,). 若D是拋物線的頂點(diǎn),E是拋物線的對(duì)稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對(duì)稱.

(1)求拋物線的解析式;

(2)求證:∠CFE=∠AFE;

(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似,若有,請(qǐng)求出所有合條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案