【題目】小明在數(shù)學課中學習了《解直角三角形》的內(nèi)容后,雙休日組織教學興趣小組的小伙伴進行實地測量.如圖,他們在坡度是i=1:2.5的斜坡DE的D處,測得樓頂?shù)囊苿油ㄓ嵒捐F塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學知識很快計算出了鐵塔高AM.親愛的同學們,相信你也能計算出鐵塔AM的高度!請你寫出解答過程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

【答案】解:∵斜坡的坡度是i= = ,EF=2,
∴FD=2.5EF=2.5×2=5,
∵CE=13,CE=GF,
∴GD=GF+FD=CE+FD=13+5=18,
在Rt△DBG中,∠GDB=45°,
∴BG=GD=18,
在Rt△DAN中,∠NDA=60°,
∴ND=NG+GD=CH+GD=2+18=20,
AN=NDtan60°=20× =20 ,
∴AM=AN﹣MN=AN﹣BG=20 ﹣18≈17(米).
答:鐵塔高AM約17米.
【解析】先根據(jù)斜坡的坡度是i=1:2.5,EF=2,求出FD的長,再根據(jù)CE=13,CE=GF,求出GD的長,在Rt△DBG和Rt△DAN中,根據(jù)∠GDB=45°和∠NAD=60°,分別求出BG=GD和ND的長,從而得出AN=NDtan60°,最后再根據(jù)AM=AN﹣MN=AN﹣BG,即可得出答案.
【考點精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】探索:小明和小亮在研究一個數(shù)學問題:已知ABCD,AB和CD都不經(jīng)過點P,探索P與A,C的數(shù)量關(guān)系.

發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):APC=A+C;

小明是這樣證明的:過點P作PQAB

∴∠APQ=A(

PQAB,ABCD.

PQCD(

∴∠CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

小亮是這樣證明的:過點作PQABCD.

∴∠APQ=A,CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

請在上面證明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是

應用:

在圖2中,若A=120°,C=140°,則P的度數(shù)為 ;

在圖3中,若A=30°,C=70°,則P的度數(shù)為 ;

拓展:

在圖4中,探索P與A,C的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】補全下列各題解題過程.

如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).

:∵EF∥AD 已知

∴∠2 = ( )

∵∠1=∠2 ( )

∴∠1=∠3 ( )

∴AB∥ ( )

∴∠BAC + = 180°( )

∵∠BAC = 70°(已知

∴∠AGD = _ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據(jù)這個規(guī)律,2 025個點的坐標為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,CE平分∠ACDABE點.

1)求證:ACE是等腰三角形;

2)若AC=13cmCE=24cm,求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班組織了一次讀書活動,統(tǒng)計了16名同學在一周內(nèi)的讀書時間,他們一周內(nèi)的讀書時間累計如表,則這16名同學一周內(nèi)累計讀書時間的中位數(shù)是

一周內(nèi)累計的讀書時間(小時)

5

8

10

14

人數(shù)(個)

1

7

5

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)若該方程的一個根為2,求a的值及該方程的另一根.
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,書桌上的一種新型臺歷和一塊主板AB、一個架板AC和環(huán)扣(不計寬度,記為點A)組成,其側(cè)面示意圖為△ABC,測得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書寫記事方便,須調(diào)整臺歷的擺放,移動點C至C′,當∠C′=30°時,求移動的距離即CC′的長(或用計算器計算,結(jié)果取整數(shù),其中 =1.732, =4.583)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

查看答案和解析>>

同步練習冊答案