【題目】如圖,有一轉盤中有A、B兩個區(qū)域,A區(qū)域所對的圓心角為120°,讓轉盤自由轉動兩次.利用樹狀圖或列表求出兩次指針都落在A區(qū)域的概率。

【答案】解:將B區(qū)域平分成兩部分,

畫樹狀圖得:

∵共有9種等可能的結果,兩次指針都落在A區(qū)域的只有1種情況,

∴兩次指針都落在A區(qū)域的概率為: .


【解析】觀察圖形A的圓心角是120°,而B的圓心角是240°,因此將B區(qū)域分成兩部分,先列出樹狀圖,再求出所有等可能的結果數(shù)及兩次指針都落在A區(qū)域的可能數(shù),再根據(jù)概率公式求解即可。
【考點精析】通過靈活運用列表法與樹狀圖法和概率公式,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點C與點D重合,讓△ABC沿這條直線向右平移,直到點A與點E重合為止.設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設定當鐘聲在n點鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點響起,第3次在(3×11﹣1=32)小時后,即7點響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點鐘,那么第3次響起時為點,第2017次響起時為點(如圖鐘表,時間為12小時制).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點E、F、G,連接ED、DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解. 根據(jù)以上方程與函數(shù)的關系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12


(1)直接寫出m的值,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有個,分別為;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C在⊙O上,已知∠ABC=130°,則∠AOC=( )

A.100°
B.110°
C.120°
D.130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x,y的方程組

(1)請直接寫出方程的所有正整數(shù)解

(2)若方程組的解滿足x+y=0,求m的值

(3)無論實數(shù)m取何值,方程x-2y+mx+5=0總有一個固定的解,請直接寫出這個解?

(4)若方程組的解中x恰為整數(shù),m也為整數(shù),求m的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,邊,,以點為原點,,所在的直線為軸和軸,建立直角坐標系.

1)點的坐標為,則點坐標為______,點坐標為______;

2)當點出發(fā),以2單位/秒的速度沿方向移動(不過點),從原點出發(fā)以1單位/秒的速度沿方向移動(不過點),,同時出發(fā),在移動過程中,四邊形的面積是否變化?若不變,求其值;若變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】半圓O的直徑AB=9,兩弦AC、BD相交于點E,弦CD= ,且BD=7,則DE=

查看答案和解析>>

同步練習冊答案