【題目】如圖O為坐標原點,四邊形ABCD是菱形,A(4,4),B點在第二象限,AB=5,AB與y軸交于點F,對角線AC交y軸于點E
(1)直接寫出B、C點的坐標;
(2)動點P從C點出發(fā)以每秒1個單位的速度沿折線段C﹣D﹣A運動,設運動時間為t秒,請用含t的代數(shù)式表示△EDP的面積;
(3)在(2)的條件下,是否存在一點P,使△APE沿其一邊翻折構成的四邊形是菱形?若存在,請直接寫出當t為多少秒時存在符合條件的點P;若不存在,請說明理由.
【答案】(1)B(-1,4),C(-4,0);見解析;(3)或7.5.
【解析】
(1)過A作AG⊥x軸于G,根據A點坐標可得AF、AG的長,即可求出BF的長,利用勾股定理可求出DG的長,進而可得OD的長,即可求出OC的長,根據B點在第二象限即可得出B、C兩點坐標;(2)根據A、C坐標,利用待定系數(shù)法可求出直線AC的解析式,即可求出E點坐標,可得OE=OF,根據菱形的性質可得∠FAE=∠DAE,利用AAS可證明△AEF≌△AEH,可得EH=EF,分別討論點P在CD、DA邊時,利用三角形面積公式表示出△EDP的面積即可;(3)分別討論沿PA、PE、AE翻折時,點P的位置,畫出圖形即可得答案.
(1)如圖,過A作AG⊥x軸于G,
∵A(4,4),四邊形ABCD是菱形,
∴AD=AB=CD=5,AG=OG=4,AG=4,
∴BF=AB-AF=1,DG==3,
∴OD=OG-DG=1,
∴OC=CD-OD=4,
∵點B在第二象限,
∴B(-1,4),C(-4,0)
(2)如圖,連接DE,過E作EH⊥AD于H,
設AC解析式為y=kx+b,
∵A(4,4),C(-4,0),
∴,
解得:,
∴直線AC的解析式為:y=x+2,
當x=0時,y=2,
∴E(0,2),
∴EF=OE=2,
∵四邊形ABCD是菱形,
∴∠FAE=∠DAE,
又∵AE=AE,∠AFE=∠AHE=90°,
∴△AEF≌△AEH,
∴EH=EF=2,
∵t=5時,D與P重合,不構成三角形,
∴t≠5,
∴當點P在CD邊運動時,即0≤t<5時,S△EDP=DP1×OE=(5-t)×2=5-t,
當點P在DA邊運動時,即5<t≤10時,S△EDP=DP2×EH=(t-5)×2=t-5.
(3)當沿AP邊翻折時,AE=CE,則P點與C點重合,
∴APE三點在一條直線上,故不符合題意.
如圖,當沿PE翻折時,AE=AP,
∵AF=4,EF=2,
∴AE==,
∴AP=,
∴t=10-,
如圖,當沿AE翻折時,設PA=AP′=EP′=x,
∵四邊形ABCD是菱形,點P在AD上,
∴點P的對稱點P′在AB邊上,
∴在Rt△EFP′中,x2=22+(4-x)2,
解得:x=2.5,
∴t=10-2.5=7.5.
綜上所述:當t為10-秒或7.5秒時存在符合條件的點P.
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班同學為了解 2011 年某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數(shù)據進行如下整理.請解答以下問題:
(1) 把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2) 求月均用水量不超過 的家庭數(shù)占被調查家庭總數(shù)的百分比;
(3) 若該小區(qū)有 戶家庭,根據調查數(shù)據估計,該小區(qū)月均用水量超過 的家庭大約有多少戶 ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據抽查結果繪制的統(tǒng)計圖的一部分.
組別 | 正確字數(shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據以上信息解決下列問題:
(1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是 .
(3)若該校共有900名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】無錫陽山水蜜桃上市后,甲、乙兩超市分別用60000元以相同的進價購進相同箱數(shù)的水蜜桃,甲超市銷售方案是:將水蜜桃按分類包裝銷售,其中挑出優(yōu)質大個的水蜜桃400箱,以進價的2倍價格銷售,剩下的水蜜桃以高于進價10%銷售.乙超市的銷售方案是:不將水蜜桃分類,直接銷售,價格按甲超市分類銷售的兩種水蜜桃售價的平均數(shù)定價.若兩超市將水蜜桃全部售完,其中甲超市獲利42000元(其它成本不計).問:
(1)水蜜桃進價為每箱多少元?
(2)乙超市獲利多少元?哪種銷售方式更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強環(huán)境保護意識,在環(huán)保局工作人員指導下,若干名“環(huán)保小衛(wèi)士” 組成了“控制噪聲污染”課題學習研究小組.在“世界環(huán)境日”當天,該小組抽樣 調查了全市 40 個噪聲測量點在某時刻的噪聲聲級(單位:dB),將調查的數(shù)據進行
處理(設所測數(shù)據均為正整數(shù)),得頻數(shù)分布表如下:
組別 | 噪聲聲級分組 | 頻數(shù) | 頻率 |
1 | 44.5~59.5 | 4 | 0.1 |
2 | 59.5~74.5 | a | 0.2 |
3 | 74.5~89.5 | 10 | 0.25 |
4 | 89.5~104.5 | b | c |
5 | 104.5~119.5 | 6 | 0.15 |
合計 | 40 | 1.00 |
根據表中提供的信息解答下列問題:
(1)頻數(shù)分布表中的a= , b= , c= ;
(2)補充完整頻數(shù)分布直方圖;
(3)如果全市共有 300 個測量點,那么在這一時刻噪聲聲級小于 75dB 的測量點約有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AD⊥BC,垂足是D,E是線段AD上的點,且AD=BD,DE=DC.
⑴ 求證:∠BED=∠C;
⑵ 若AC=13,DC=5,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com