操作與探究
(1)如圖1,已知點(diǎn)A,B的坐標(biāo)分別為(0,0),(4,0),將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′.
①畫出△AB′C′;
②點(diǎn)C′的坐標(biāo)______.
(2)如圖2,在平面直角坐標(biāo)系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
實(shí)驗(yàn)與探究:由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫出它們的坐標(biāo):B′______、C′______;
歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),
你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,-n)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P'的坐標(biāo)為______.
作業(yè)寶

解:(1)①如圖所示:△AB′C′即為所求;

②點(diǎn)C′的坐標(biāo)為:(-2,5);
故答案為:(-2,5);

(2)由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,它們的坐標(biāo)分別為:
B′(3,5)、C′(5,-2);
發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,-n)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P'的坐標(biāo)為:
(-n,m).
故答案為:(3,5)、(5,-2);(-n,m).
分析:(1)①根據(jù)△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′,進(jìn)而得出對(duì)應(yīng)點(diǎn)B′,C′位置,即可得出圖象;
②根據(jù)①中所求即可得出答案;
(2)利用平面直角坐標(biāo)系得出對(duì)應(yīng)點(diǎn)坐標(biāo),進(jìn)而得出關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)坐標(biāo)特點(diǎn)為;橫縱坐標(biāo)交換位置.
點(diǎn)評(píng):此題主要考查了圖形的旋轉(zhuǎn)變換以及關(guān)于直線對(duì)稱點(diǎn)坐標(biāo)性質(zhì),根據(jù)已知得出發(fā)現(xiàn)點(diǎn)的坐標(biāo)變換是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作與探究
探索:在如圖1至圖3中,△ABC的面積為a.
(1)如圖1,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA、若△ACD的面積為S1,則S1=
 
(用含a的代數(shù)式表示);
(2)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE、若△DEC的面積為S2,則S2=
 
(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3)、若陰影部分的面積為S3,則S3=
 
(用含a的代數(shù)式表示).
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長(zhǎng)一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次、可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來(lái)△ABC面積的
 
倍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫出折痕;
(3)請(qǐng)你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

操作與探究
探索:在如圖1至圖3中,△ABC的面積為a.
(1)如圖1,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA、若△ACD的面積為S1,則S1=______(用含a的代數(shù)式表示);
(2)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE、若△DEC的面積為S2,則S2=______(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3)、若陰影部分的面積為S3,則S3=______(用含a的代數(shù)式表示).
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長(zhǎng)一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次、可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來(lái)△ABC面積的______倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

操作與探究
探索:在如圖1至圖3中,△ABC的面積為a.
(1)如圖1,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA、若△ACD的面積為S1,則S1=______(用含a的代數(shù)式表示);
(2)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE、若△DEC的面積為S2,則S2=______(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3)、若陰影部分的面積為S3,則S3=______(用含a的代數(shù)式表示).
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長(zhǎng)一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次、可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來(lái)△ABC面積的______倍.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案