【題目】已知平行四邊形ABCD,過(guò)點(diǎn)ABC的垂線,垂足為點(diǎn)E,且滿足AEEC,過(guò)點(diǎn)CAB的垂線,垂足為點(diǎn)F,交AE于點(diǎn)G,連接BG

1)如圖1,若AC,CD4,求BC的長(zhǎng)度;

2)如圖2AC上一點(diǎn)Q,連接EQ,在△QEC內(nèi)取一點(diǎn),連接QH,EH,過(guò)點(diǎn)HAC的垂線,垂足為點(diǎn)P,若QHEH,∠QEH45°.求證:AQ2HP

【答案】13+;(2)見(jiàn)解析

【解析】

1)利用勾股定理分別求出AE,BE即可解決問(wèn)題.

2)如圖2中,如圖2中,作EMQEQH的延長(zhǎng)線于M,連接CM.證明△ABQ≌△CEMSAS),推出AQCM,再利用三角形的中位線定理解決問(wèn)題即可.

1)解:如圖1中,

AEBCE

∴∠AEC90°,

AEEC,AC

AEEC,

∵四邊形ABCD是平行四邊形,

ABCD4,

∵∠AEB90°

BE,

BCBE+EC3+

2)證明:如圖2中,如圖2中,作EMQEQH的延長(zhǎng)線于M,連接CM

QHEH,∠QEH45°,

∴∠QEH=∠EQH45°,

∴∠EHQ90°

EMEQ,

∴∠MEQ90°

∴∠EMQ=∠EQM45°,

EQEM,

EHQM,

QHHM,

∵∠AEC=∠QEM90°

∴∠AEQ=∠CEM,

EAECEQEM,

∴△AEQ≌△CEMSAS),

AQCM,∠EAQ=∠ECM45°,

∵∠ACE45°,

∴∠ACM90°,

HPQC,

∴∠HPQ=∠MCP,

HPCM,

QPPC,

QHHM

CM2PH,

AQ2PH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)的圖象相交于點(diǎn)A,并與軸交于點(diǎn)CSAOC=15.點(diǎn)D是線段AC上一點(diǎn),CDAC=23

1)求的值;

2)求點(diǎn)D的坐標(biāo);

3)根據(jù)圖象,直接寫出當(dāng)時(shí)不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Mn,﹣n在第二象限,過(guò)點(diǎn)M的直線y=kx+b(0<k<1)分別交x軸、y軸于點(diǎn)AB,過(guò)點(diǎn)MMNx軸于點(diǎn)N,則下列點(diǎn)在線段AN的是( 。

A. ((k﹣1)n,0) B. ((k+n,0)) C. ,0) D. ((k+1)n,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考英語(yǔ)聽(tīng)力測(cè)試期間,需要杜絕考點(diǎn)周圍的噪音。如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125點(diǎn)處有一消防隊(duì)。在聽(tīng)力考試期間,消防隊(duì)突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火。已知消防車的警報(bào)聲傳播半徑為100米,若消防車的警報(bào)聲對(duì)聽(tīng)力測(cè)試造成影響,則消防車必須改道行駛。試問(wèn):消防車是否需要改道行駛?說(shuō)明理由.1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷一種成本單價(jià)為50/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于80/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似看作一次函數(shù)ykx+b的關(guān)系(如圖所示)

I)根據(jù)圖象,求一次函數(shù)ykx+b的解析式,并寫出自變量x的取值范圍;

(Ⅱ)該公司要想每天獲得最大的利潤(rùn),應(yīng)把銷售單價(jià)定為多少?最大利潤(rùn)值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Px0,m),Q1,n)在二次函數(shù)y=(x+a)(xa1)(a≠0)的圖象上,且mn下列結(jié)論:①該二次函數(shù)與x軸交于點(diǎn)(﹣a,0)和(a+10);②該二次函數(shù)的對(duì)稱軸是x; ③該二次函數(shù)的最小值是(a+22; 0x01.其中正確的是_____.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點(diǎn)E是弦AC的中點(diǎn),連接BE,并延長(zhǎng)交半圓O于點(diǎn)D,若OB2,OE1,則∠CDE的度數(shù)是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點(diǎn)到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):

如圖①,在△ABC中,AD平分∠BACBC于點(diǎn)D,則.提示:過(guò)點(diǎn)CCEADBA的延長(zhǎng)線于點(diǎn)E

請(qǐng)根據(jù)上面的提示,寫出得到這一結(jié)論完整的證明過(guò)程.

結(jié)論應(yīng)用:如圖②,在RtABC中,∠C90°,AC8,BC15,AD平分∠BACBC于點(diǎn)D.請(qǐng)直接利用問(wèn)題探究的結(jié)論,求線段CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案