【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,6),點(diǎn)B的坐標(biāo)是(6,0).
(1)如圖1,點(diǎn)C的坐標(biāo)是(﹣2,0),BD⊥AC于D交y軸于點(diǎn)E.求點(diǎn)E的坐標(biāo);
(2)在(1)的條件下求證:OD平分∠CDB;
(3)如圖2,點(diǎn)F為AB中點(diǎn),點(diǎn)G為x正半軸點(diǎn)B右側(cè)一動(dòng)點(diǎn),過(guò)點(diǎn)F作FG的垂線FH,交y軸的負(fù)半軸于點(diǎn)H,那么當(dāng)點(diǎn)G的位置不斷變化時(shí),S△AFH﹣S△FBG的值是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)求出相應(yīng)結(jié)果.
【答案】(1)點(diǎn)E的坐標(biāo)為(0,2);(2)詳見(jiàn)解析;(3)S△AFH﹣S△FEG=9不發(fā)生變化,理由詳見(jiàn)解析.
【解析】
(1)易得OA=OB,由∠ACO+∠CAO=90°,∠BCD+∠CBE=90°,可得∠CAO=∠CBE,可證得△AOC≌△BOE,可得OE=OC,可得E點(diǎn)左邊;
(2)過(guò)點(diǎn)O作OM⊥BD于M,ON⊥AC于N,由△AOC≌△BOE,可得S△AOC=S△BOE,由AC=BE,可得OM=ON,所以點(diǎn)O一定在∠CDB的角平分線上,即OD平分∠CDB;
(3))S△AFH﹣S△FEG=9不發(fā)生變化,理由如下:連接OF,可證得△FOH≌△FBG,可得
S△AOC=S△BOE,可得S△AFH﹣S△FBG=S△AFH﹣S△FOH=S△FOA==9.
解:(1)∵x軸⊥y軸
∴∠AOC=∠BOE=90°
∴∠ACO+∠CAO=90°
∵BD⊥AC
∴∠BCD+∠CBE=90°
∴∠CAO=∠CBE,
∵點(diǎn)A,B的坐標(biāo)分別為(0,6),(6,0)
∴OA=OB=6,
在△AOC和△BOE中
∴△AOC≌△BOE(ASA)
∴OE=OC,
∵點(diǎn)C的坐標(biāo)為(﹣2,0)
∴OC=OE=2
∴點(diǎn)E的坐標(biāo)為(0,2)
(2)過(guò)點(diǎn)O作OM⊥BD于M,ON⊥AC于N
∵△AOC≌△BOE
∴S△AOC=S△BOE,AC=BE,
∴ACON=BCOM
∴OM=ON,
∴點(diǎn)O一定在∠CDB的角平分線上
即OD平分∠CDB;
(3)S△AFH﹣S△FEG=9不發(fā)生變化,理由如下:
連接OF
∵△AOB是等腰直角三角形且點(diǎn)F為AB的中點(diǎn)
∴OF⊥AB,OF=FB,OF平分∠AOB
∴∠OFB=∠OFH+∠HFB=90°
又∵FG⊥FH
∴∠HFG=∠BFG+∠HFB=90°
∴∠OFH=∠BFG
∵∠FOB=
∴∠FOH=∠FOB+∠HOB=45°+90°=135°
又∵∠FBG=180°﹣∠ABO=180°﹣45°=135°
∴∠FOH=∠FBG
在△FOH和△FBG中
∴△FOH≌△FBG(ASA)
∴S△AOC=S△BOE
∴S△AFH﹣S△FBG
=S△AFH﹣S△FOH
=S△FOA=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該校地下停車(chē)場(chǎng)的限高CD,在課外活動(dòng)時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車(chē)場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車(chē)場(chǎng)頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車(chē)場(chǎng)的高度AC及限高CD(結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中, 厘米, 厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B在雙曲線y= (x<0)上,連接OA、AB,以O(shè)A、AB為邊作OABC.若點(diǎn)C恰落在雙曲線y= (x>0)上,此時(shí)OABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【提出問(wèn)題】如圖1,小東將一張AD為12,寬AB為4的長(zhǎng)方形紙片按如下方式進(jìn)行折疊:在紙片的一邊BC上分別取點(diǎn)P、Q,使得BP=CQ,連結(jié)AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結(jié)MN.小東發(fā)現(xiàn)線段MN的位置和長(zhǎng)度隨著點(diǎn)P、Q的位置發(fā)生改變.
(1)【規(guī)律探索】請(qǐng)?jiān)趫D1中過(guò)點(diǎn)M,N分別畫(huà)ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F.
求證:①M(fèi)E=NF;②MN∥BC.
(2)【解決問(wèn)題】如圖1,若BP=3,求線段MN的長(zhǎng);
(3)如圖2,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,連結(jié)AO,則圖中共有全等三角形的對(duì)數(shù)為( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=45°,AD⊥BC于點(diǎn)D,以D為圓心DC為半徑作⊙D交AD于點(diǎn)G,過(guò)點(diǎn)G作⊙D的切線交AB于點(diǎn)F,且F恰好為AB中點(diǎn).
(1)求tan∠ACD的值.
(2)連結(jié)CG并延長(zhǎng)交AB于點(diǎn)H,若AH=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:李華是一個(gè)勤奮好學(xué)的學(xué)生,他常常通過(guò)書(shū)籍、網(wǎng)絡(luò)等渠道主動(dòng)學(xué)習(xí)各種知識(shí).下面是他從網(wǎng)絡(luò)搜到的兩位數(shù)乘11的速算法,其口訣是:“頭尼一拉,中間相加,滿(mǎn)十進(jìn)一”.例如:①.計(jì)算過(guò)程:兩數(shù)拉開(kāi),中間相加,即,最后結(jié)果;②.計(jì)算過(guò)程:兩數(shù)分開(kāi),中間相加,即,滿(mǎn)十進(jìn)一,最后結(jié)果.
(1)計(jì)算:① , ②_____ ;
(2)若某一個(gè)兩位數(shù)十位數(shù)字是,個(gè)位數(shù)字是,將這個(gè)兩位數(shù)乘,得到一個(gè)三位數(shù),則根據(jù)上述的方法可得,該三位數(shù)百位數(shù)字是____,十位數(shù)字是_____, 個(gè)位數(shù)字是_____ ; ( 用含的化數(shù)式表示)
(3)請(qǐng)你結(jié)合(2)利用所學(xué)的知識(shí)解釋其中原理.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com