【題目】如圖,中,厘米,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時,點在線段上由點向點運動.若點的運動速度為厘米/秒,則當(dāng)全等時,的值為__________

【答案】2.253

【解析】

已知∠B=C,根據(jù)全等三角形的性質(zhì)得出BD=PC,或BP=PC,進而算出時間t,再算出y即可.

解:設(shè)經(jīng)過t秒后,△BPD與△CQP全等,

AB=AC=12厘米,點DAB的中點,

BD=6厘米,

∵∠B=C,BP=ytCQ=3t,
∴要使△BPD和△CQP全等,

則當(dāng)△BPD≌△CQP時,

BD=CP=6厘米,

BP=3,
t=3÷3=1(秒),
y=3÷1=3(厘米/秒),
當(dāng)△BPD≌△CPQ,

BP=PCBD=QC=6,

t=6÷3=2(秒),
BC=9cm
PB=4.5cm,
y=4.5÷2=2.25(厘米/秒).

故答案為:2.253.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市正在舉行文化藝術(shù)節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術(shù)節(jié)紀(jì)念品.若購進甲種紀(jì)念品4件,乙種紀(jì)念品3件,需要550元,若購進甲種紀(jì)念品5件,乙種紀(jì)念品6件,需要800元.

(1)求購進甲、乙兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進這兩種紀(jì)念品共80件,其中甲種紀(jì)念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀(jì)念品的資金不能超過7100元,那么該商店共有幾種進貨方案7

(3)若銷售每件甲種紀(jì)含晶可獲利潤20元,每件乙種紀(jì)念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段路基的橫斷面是直角梯形,如圖1,已知原來坡面的坡角α的正弦值為0.6,現(xiàn)不改變土石方量,全部利用原有土石方進行坡面改造,使坡度變小,達到如右下圖2的技術(shù)要求.試求出改造后坡面的坡度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O中,AB為直徑,C⊙O上一點.

(1)如圖1,過點C⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);

(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(  )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB與⊙O相切于點B,過點BOP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PAAO,AO的延長線交⊙O于點E,與PB的延長線交于點D

1)求證:PA是⊙O的切線;

2)若tanBAD=,且OC=4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生最喜愛的一項課外活動項目,隨機對全校部分學(xué)生進行了一次調(diào)査,調(diào)査結(jié)果有三種情況:A.文學(xué)藝術(shù);B.科技制作;C.體育運動.并將調(diào)查結(jié)果繪制成如下的不完整統(tǒng)計圖.

請根據(jù)相關(guān)信息,解答下列問題:

(1)本次活動共調(diào)查了多少名學(xué)生?

(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中A所在扇形的圓心角的度數(shù);

(3)若該校共有1400名學(xué)生,試估計該校學(xué)生中最喜愛文學(xué)藝術(shù)的人數(shù)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直角三角形,,點、分別在上,且

下列結(jié)論:①,②,

③當(dāng)時,是等邊三角形,

④當(dāng)時,,

其中正確結(jié)論的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖,點為線段外一動點,且,若,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點的延長線上時,線段取得最大值

問題解決:如圖,點為線段外一動點,且,若,,連接,當(dāng)取得最大值時,的度數(shù)為_________

查看答案和解析>>

同步練習(xí)冊答案