【題目】一空水池現(xiàn)需注滿水,水池深 4.9m,現(xiàn)以不變的流量注水,數(shù)據(jù)如下表所示:

注水時間 t(h)

0.5

1

1.5

2

水的深度 h(m)

0.7

1.4

2.1

2.8

(1)上表反映的變量關(guān)系中,注水時間 t _____水的深度 h _____

(2)注滿水池需要的時間是_____h.

【答案】 自變量 因變量 3.5

【解析】(1)由題意可知,上表反映的變量關(guān)系中,注水時間t是:自變量;水的深度h是:因變量;

(2)觀察、分析表中數(shù)據(jù)可知,每0.5小時,水的深度增加0.7m,

注滿水池需要的時間為:4.9÷0.7×0.5=3.5(小時).

故答案為:(1)自變量;(2)因變量;(3)3.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2m=5,2n=6,則2m+2n_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三邊長a,b,c滿足2ab=(a+b)2﹣c2 , 則此三角形是( 。
A.鈍角三角形
B.銳角三角形
C.直角三角形
D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.

(1)如圖所示兩個等腰直角ABC,DBE,兩直角邊交于點(diǎn)F,連接BF、AD,求證:BF=AD;

(2)如果小華將兩塊三角板ABC,DBE如圖所示擺放,使D、B、C三點(diǎn)在一條直線上,AC、DE的延長線相交于點(diǎn)F,過點(diǎn)F作FGBC,交直線AE于點(diǎn)G,連接AD,F(xiàn)B,求證:FG=AC+DC;

(3)在(2)的條件下,若AG=7,DC=5,將一個45°角的頂點(diǎn)與點(diǎn)B重合,并繞點(diǎn)B旋轉(zhuǎn),這個角的兩邊分別交線段FG于P、Q兩點(diǎn)(如圖),若PG=2,求線段FQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=-2x2的開口方向是______,它的形狀與y2x2的形狀______,它的頂點(diǎn)坐標(biāo)是______,對稱軸是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:①兩直線平行,內(nèi)錯角相等;②對頂角相等;③等腰三角形的兩個底角相等;④菱形的對角線互相垂直,其中逆命題是真命題的是( 。

A. ①②③④B. ①③④C. ①③D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出命題“如果兩個實數(shù)相等,那么它們的絕對值相等”的逆命題:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺階AC的坡度為1:(即AB:BC=1:),且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側(cè)傾器的高度忽略不計).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑等于5厘米,圓心到直線l的距離是:

14厘米;(25厘米;(36厘米.

直線l和圓分別有幾個公共點(diǎn)?分別說出直線l與圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案