【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.
【答案】4小時(shí).
【解析】
設(shè)該客車(chē)由普通公路從甲地到乙地的平均速度為xkm/h,列出關(guān)于x的方程,解出x=75,再檢驗(yàn)x=75是原方程的根,即可得出答案.
解:設(shè)該客車(chē)由普通公路從甲地到乙地的平均速度為xkm/h,則由高速公路從甲地到乙地的平均速度為(x+45)km/h,
依題意,
解這個(gè)方程得x=75,
經(jīng)檢驗(yàn),x=75是原方程的根,所以小時(shí),
答:該客車(chē)由高速公路從甲地到乙地所需要的時(shí)間是4小時(shí) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ ABCD中,點(diǎn)E、F在對(duì)角線(xiàn)BD上,且BE=DF.
(1)求證:AE=CF;
(2)求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,過(guò)點(diǎn)A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線(xiàn)段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問(wèn)題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請(qǐng)求出甲登山過(guò)程中,距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時(shí),求x的值(直接寫(xiě)出滿(mǎn)足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱(chēng)這個(gè)分式為“和諧分式”.如: ,則是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號(hào));
①;②;③;④;
(2)將“和諧分式”化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:=_______(要寫(xiě)出變形過(guò)程);
(3)應(yīng)用:先化簡(jiǎn),并求x取什么整數(shù)時(shí),該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】推理填空
如圖,已知AB∥CD,∠A=∠C,試說(shuō)明∠B=∠D.
解:∵AB∥CD(已知)
∴∠B+∠C=180°( )
又∵∠A=∠C(已知)
∴∠B+________=180°(等量代換)
∴AD∥BC ( )
∴∠C+∠D=180°( )
又∵∠B+∠C=180°(已證)
∴∠B=∠D ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線(xiàn) m 經(jīng)過(guò)點(diǎn) A,BD⊥m 于點(diǎn) D,CE⊥m 于點(diǎn) E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC 中,AB=AC,D、A、E 三點(diǎn)都在直線(xiàn) m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購(gòu)牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購(gòu)了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購(gòu)牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com