【題目】如圖,已知于點(diǎn)C,AC=4,BC=,將線段AC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),得到線段AD,連接DC,DB,則線段DB的長(zhǎng)為__________

【答案】

【解析】

證明ACD是等邊三角形,據(jù)此求得DC,作DEBC于點(diǎn)E,首先在RtCDE中利用三角函數(shù)求得DECE的長(zhǎng),然后在RtBDE中利用勾股定理求解.

解:∵AC=AD,CAD=60°,

∴△ACD是等邊三角形,

DC=AC=4.

DEBC于點(diǎn)E.

∵△ACD是等邊三角形,

∴∠ACD=60°,

又∵ACBC,

∴∠DCE=ACB-ACD=90°-60°=30°,

RtCDE中,DE=DC=2,

CE=DCcos30°=4×=2,

BE=BC-CE=3-2=

RtBDE中,BD===

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校積極參與垃圾分類活動(dòng),以班級(jí)為單位收集可回收的垃圾,下面是七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).

某校七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表

組別(kg

頻數(shù)

4.0~4.5

2

4.5~5.0

a

5.0~5.5

3

5.5~6.0

1

1)求a的值;

2)已知收集的可回收垃圾以0.8/kg被回收,該年級(jí)這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:
①新知學(xué)習(xí)
若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
②解決問(wèn)題

已知等邊三角形ABC的邊長(zhǎng)為2.
(1)如圖一,若AD⊥BC,垂足為D,試說(shuō)明AD是△ABC的一條面徑,并求AD的長(zhǎng);
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長(zhǎng);
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且SMOA=SDOE
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請(qǐng)你猜測(cè)等邊三角形ABC的面徑長(zhǎng)l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長(zhǎng)線上一點(diǎn),聯(lián)結(jié)DE交邊AB于點(diǎn)F,聯(lián)結(jié)AC交DE于點(diǎn)G,且 =
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,1),下列各點(diǎn)中在該函數(shù)圖象上的是(

A. (1,5) B. (2,5) C. (-2,-2) D. (0,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).

(1)求k的值;

(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi)運(yùn)動(dòng),試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

(3)探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),OPA的面積為,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等邊三角形,連接AC,DE,CD.

(1)猜想ACDE的數(shù)量關(guān)系,并說(shuō)明理由。

(2)給出定義:若一個(gè)四邊形中存在一組鄰邊的平方等于一條對(duì)角線的平方,則這個(gè)四邊形為勾股四邊形.如圖,若,求證:四邊形ABCD是勾股四邊形。

(3)設(shè),,的面積分別是,若,試探究之間滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.

(1)求證:∠DAE=∠DCE;
(2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)學(xué)生共450人,其中男生250人,女生200人.該校對(duì)九年級(jí)所有學(xué)生進(jìn)行了一次體育測(cè)試,并隨機(jī)抽取了50名男生和40名女生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:

(1)請(qǐng)解釋“隨機(jī)抽取了50名男生和40名女生”的合理性;

(2)從上表的“頻數(shù)”、“百分比”兩列數(shù)據(jù)中選擇一列,用適當(dāng)?shù)慕y(tǒng)計(jì)圖表示;

(3)估計(jì)該校九年級(jí)學(xué)生體育測(cè)試成績(jī)不及格的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案