【題目】如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩與地面BC交于點(diǎn)B、C,測(cè)得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)請(qǐng)用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)
(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).
【答案】(1)見(jiàn)解析;(2)是7.3米
【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點(diǎn),然后分別以E、F為圓心畫弧,交點(diǎn)為G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點(diǎn)G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.
解:(1)如下圖,
圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點(diǎn),然后分別以E、F為圓心畫弧,交點(diǎn)為G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;
圖2,分別以B、C為圓心,BA為半徑畫弧,交于點(diǎn)G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;
(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,
∴BD=AD=x,
∴CD=20﹣x.
∵tan∠ACD=,
即tan30°=,
∴x==10(﹣1)≈7.3(米).
答:路燈A離地面的高度AD約是7.3米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某足球特色學(xué)校在商場(chǎng)購(gòu)買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費(fèi)2000元、1400元購(gòu)買甲、乙兩種足球,這樣購(gòu)得甲種足球的數(shù)量是購(gòu)得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價(jià)各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的變換點(diǎn)的坐標(biāo)定義如下:
當(dāng)時(shí),點(diǎn)的坐標(biāo)為;當(dāng)時(shí),點(diǎn)的坐標(biāo)為.
(1)點(diǎn)的變換點(diǎn)的坐標(biāo)是 ;點(diǎn)的變換點(diǎn)為,連接,則 °;
(2)已知拋物線與軸交于點(diǎn),(點(diǎn)在點(diǎn)的左側(cè)),頂點(diǎn)為.點(diǎn)在拋物線上,點(diǎn)的變換點(diǎn)為.若點(diǎn)恰好在拋物線的對(duì)稱軸上,且四邊形是菱形,求的值;
(3)若點(diǎn)是函數(shù)圖象上的一點(diǎn),點(diǎn)的變換點(diǎn)為,連接,以為直徑作,的半徑為,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有( 。﹤(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)活動(dòng)小組測(cè)量吉林市“世紀(jì)之舟”的高度.他們制定了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)景,測(cè)量項(xiàng)目及數(shù)據(jù)如下表:
項(xiàng)目 | 內(nèi)容 | |||
課題 | 測(cè)量吉林市“實(shí)際之舟”的高度 | |||
示意圖 | 如圖,用測(cè)角儀在點(diǎn)處測(cè)得“世紀(jì)之舟”頂端的仰角是,前進(jìn)一段距離到達(dá)點(diǎn),用測(cè)角儀測(cè)得“世紀(jì)之舟”頂端的仰角是,且、、在同一直線上. | |||
測(cè)量數(shù)據(jù) | 的度數(shù) | 的度數(shù) | 的長(zhǎng)度 | 測(cè)角儀,的高度 |
50米 | 1.5米 | |||
… | … |
請(qǐng)你根據(jù)活動(dòng)小組測(cè)得的數(shù)據(jù),求世紀(jì)之舟的高(結(jié)果保留小數(shù)點(diǎn)后一位).
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個(gè)公共點(diǎn).
()求m的取值范圍;
()若m取滿足條件的最小的整數(shù),
①寫出這個(gè)二次函數(shù)的表達(dá)式;
②當(dāng)n≤x≤1時(shí),函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過(guò)原點(diǎn)O.設(shè)平移后的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=a(x-h(huán))2 +k,當(dāng)x<2時(shí),y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),如果點(diǎn)Q(x,y′)的縱坐標(biāo)滿足y′=,那么稱點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
(1)請(qǐng)直接寫出點(diǎn)(3,5)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo) ;
(2)如果點(diǎn)P在函數(shù)y=x﹣2的圖象上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M(m,n)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)y=2x2的圖象上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“數(shù)學(xué)興趣小組”根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整:
(1)該函數(shù)的自變量的取值范圍是______;
(2)同學(xué)們先找到與的幾組對(duì)應(yīng)值,然后在下圖的平面直角坐標(biāo)系中,描出各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).請(qǐng)你根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):_______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com